Detection and Quantitative Estimation of Toxic Acrylamide Levels in Selected Potatoes Chips and French Fries from the Libyan Market Using HPLC-UV Method
-
Published:2021-06-30
Issue:2
Volume:36
Page:106-115
-
ISSN:2617-2186
-
Container-title:AL-MUKHTAR JOURNAL OF SCIENCES
-
language:
-
Short-container-title:MJSc
Author:
Khreit Osama I. G.,Elfowiris Abdulsalam,Aljali Abdulrahman A.,Abduljalil Omukalthum
Abstract
Acrylamide is a potential health hazardous compound occurring in baked and fried food as a result of excessive dry heating during the preparation and/or processing of foods. Exposure to a high level of acrylamide may cause cancer, neurotoxicity, and mutagenicity. In this study, an isocratic reversed-phase high-performance liquid chromatographic (HPLC) method using a C18 column was used for the determination of acrylamide in selected food. The mobile phase consisted of 0.1% formic acid in water: acetonitrile (98:02), and the flow rate was 1.0 mL min-1, elution was monitored at 200 nm. Validation in selected conditions showed that the chosen method is sensitive, selective, precise, and reproducible with a linear detector response for the determination of acrylamide. The limit of detection (LOD), and the limit of quantification (LOQ), were achieved at 0.41μg mL-1 and 1.25 μg mL-1respectively. The proposed method was also applied after validation to the most popular six brands of chips and French fries available in the Libyan market. Acrylamide was extracted by a simplified extraction method avoiding cleanup by solid-phase extraction (SPE), then analyzed by HPLC-UV. The highest level of acrylamide was found in one brand of chips with a concentration of 16.33 μg mL-1, whereas only one of the French fries products analyzed exhibited an acrylamide concentration of 10.26 μg mL-1.
Publisher
Omar Al-Mukhtar University
Reference30 articles.
1. Altunay, N., Gurkan, R., & Orhan, U. (2016, Dec 1). A preconcentration method for indirect determination of acrylamide from chips, crackers and cereal-based baby foods using flame atomic absorption spectrometry. Talanta, 161, 143-150. 2. Binet, S., Bru, K., Klinka, T., Touze, S., & Motelica-Heino, M. (2015, May). Water and acrylamide monomer transfer rates from a settling basin to groundwaters. Environ Sci Pollut Res Int, 22(9), 6431-6439. 3. Bull, R. J., Robinson, M., Laurie, R. D., Stoner, G. D., Greisiger, E., Meier, J. R., & Stober, J. (1984, Jan). Carcinogenic effects of acrylamide in Sencar and A/J mice. Cancer Res, 44(1), 107-111. 4. Calbiani, F., Careri, M., Elviri, L., Mangia, A., & Zagnon, I. (2019). Development and Single-Laboratory Validation of a Reversed-Phase Liquid Chromatography–Electrospray–Tandem Mass Spectrometry Method for Identification and Determination of Acrylamide in Foods. Journal of AOAC INTERNATIONAL, 87(1), 107-115. 5. Calleman, C. J., Wu, Y., He, F., Tian, G., Bergmark, E., Zhang, S., Deng, H., Wang, Y., Crofton, K. M., Fennell, T., & et al. (1994, Jun). Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol Appl Pharmacol, 126(2), 361-371.
|
|