Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras
-
Published:2023-04-04
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Author:
Lin Yuanchang, ,Liu Xuguang,Bai Chengming, ,
Abstract
We establish a bialgebra theory for differential algebras, called differential antisymmetric infinitesimal (ASI) bialgebras by generalizing the study of ASI bialgebras to the context of differential algebras, in which the derivations play an important role. They are characterized by double constructions of differential Frobenius algebras as well as matched pairs of differential algebras. Antisymmetric solutions of an analogue of associative Yang-Baxter equation in differential algebras provide differential ASI bialgebras, whereas in turn the notions of O-operators of differential algebras and differential dendriform algebras are also introduced to produce the former. On the other hand, the notion of a coherent derivation on an ASI bialgebra is introduced as an equivalent structure of a differential ASI bialgebra. They include derivations on ASI bialgebras and the set of coherent derivations on an ASI bialgebra composes a Lie algebra which is the Lie algebra of the Lie group consisting of coherent automorphisms on this ASI bialgebra. Finally, we apply the study of differential ASI bialgebras to Poisson bialgebras, extending the construction of Poisson algebras from commutative differential algebras with two commuting derivations to the context of bialgebras, which is consistent with the well constructed theory of Poisson bialgebras. In particular, we construct Poisson bialgebras from differential Zinbiel algebras.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
Geometry and Topology,Mathematical Physics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献