Adiabatic Limit, Theta Function, and Geometric Quantization

Author:

Yoshida Takahiko,

Abstract

Let $\pi\colon (M,\omega)\to B$ be a non-singular Lagrangian torus fibration on a complete base $B$ with prequantum line bundle $\bigl(L,\nabla^L\bigr)\to (M,\omega)$. Compactness on $M$ is not assumed. For a positive integer $N$ and a compatible almost complex structure $J$ on $(M,\omega)$ invariant along the fiber of $\pi$, let $D$ be the associated Spin${}^c$ Dirac operator with coefficients in $L^{\otimes N}$. First, in the case where $J$ is integrable, under certain technical condition on $J$, we give a complete orthogonal system $\{ \vartheta_b\}_{b\in B_{\rm BS}}$ of the space of holomorphic $L^2$-sections of $L^{\otimes N}$ indexed by the Bohr-Sommerfeld points $B_{\rm BS}$ such that each $\vartheta_b$ converges to a delta-function section supported on the corresponding Bohr-Sommerfeld fiber $\pi^{-1}(b)$ by the adiabatic(-type) limit. We also explain the relation of $\vartheta_b$ with Jacobi's theta functions when $(M,\omega)$ is $T^{2n}$. Second, in the case where $J$ is not integrable, we give an orthogonal family $\big\{ {\tilde \vartheta}_b\big\}_{b\in B_{\rm BS}}$ of $L^2$-sections of $L^{\otimes N}$ indexed by $B_{\rm BS}$ which has the same property as above, and show that each $D{\tilde \vartheta}_b$ converges to $0$ by the adiabatic(-type) limit with respect to the $L^2$-norm.

Publisher

SIGMA (Symmetry, Integrability and Geometry: Methods and Application)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3