The Over-Damped String Stability Condition for a Platooning System

Author:

Khound ParthibORCID,Will PeterORCID,Tordeux AntoineORCID,Gronwald Frank

Abstract

The over-damped string stability criterion is a very strong stability condition that not only addresses the stability in a stricter sense but also adequately captures the safety performance of a platoon. However, the mathematical representation of this criterion is incomplete in the literature. Here, this representation is completely described. Moreover, this article presents the mathematical test method to evaluate this stability condition for linear or linearized systems from the transfer function. The classical sting stability condition does not address the transient undesired convergent dynamics of a platoon, such as over-shooting, under-shooting or damped oscillating dynamics. This paper demonstrates that the over-damped string stability characteristic significantly attenuates these undesired convergent dynamics in the upstream direction. Thus, the advantage of this condition over the classical criterion for linear system is clarified theoretically and by simulation. Later, the numerical method to analyze the over-damped string stability criterion for nonlinear systems is discussed. Additionally, numerical simulations of an over-damped string stable adaptive cruise control (ACC) vehicle model are compared with that of some experimental test results on platoons of commercially implemented ACC equipped vehicles.

Publisher

University of Craiova

Reference28 articles.

1. R. Rajamani, Vehicle dynamics and control, 2nd ed. New York, NY, USA: Springer Science & Business Media, 2012, pp. 141-200.

2. P. Khound, P. Will, and F. Gronwald, "Local and string stability conditions of a generalized adaptive cruise control system," in AmE 2020 - Automotive meets Electronics

3. 11th GMM-Symp., Dortmund, Germany, Mar. 2020, pp. 29-36.

4. J. Zhou and H. Peng, “String stability conditions of adaptive cruise control algorithms,” in IFAC Symp. Advances in Automotive Control, Salerno, Italy, Apr. 2004, pp. 649–654.

5. J. Zhou and H. Peng, “Range policy of adaptive cruise control vehicles for improved flow stability and string stability,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 2, pp. 229-237, Jun. 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3