Melanoma Detection using Convolutional Neural Networks

Author:

Rupa P.,Shekhar K. S. Raja,Prakash P. Bhanu

Abstract

In humans, most severe and common type cancer is skin cancer. Skin cancers are basically 3 types: basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and Melanoma. Among these Melanoma is dangerous skin cancer. Melanoma is classified as two types: Benign Melanoma and Malignant Melanoma. If Melanoma can be identified in early stages it can be cured easily. The conventional method for detecting Melanoma is very painful. In this study deep learning techniques like CNN is used to detect Melanoma. CNN consists of convolutional layers, pooling layers and fully connected layers. Both training and testing of images can be done using CNN. ISIC Archive 2017 dataset is given to the network. By comparing different number of epochs and batch size, accuracy is noted. Highest accuracy 88.89% is achieved at 45 epoch count and batch size 2.

Publisher

International Journal of Innovative Science and Research Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3