The magmatic system of the Colima Volcano from magnetotelluric and ambient noise data

Author:

Arzate Jorge A.,Romo-Lozano Héctor M.,De Plaen Raphael,Corbo-Camargo Fernando

Abstract

Here we present the results obtained from the 3D inversion of the full impedance of 21 magnetotelluric soundings in the frequency range of 1000–0.05 Hz. The results confirm the existence of a flat lying conductor at a depth of 2–4 km bmsl under the Colima Volcano (CV) acting as a natural cap seal of the Colima Volcanic Complex hydrothermal system. Model results along five EW vertical sections extracted from the 3D inverted impedance show that the upper crust (<15 km) in the northern sector of the CVC is far more resistive (>1000 ohm·m) and compact than in the southern zone, where it becomes more conductive and apparently more fragmented. The combined results of horizontal and vertical resistivity slices and sections reveals a vertical conductor (10–20 ohm·m) of ellipsoidal shape under the Colima Volcano, which extend from about 5 km bmsl down to at least 15 km bmsl. The approximate dimensions of the major and minor axis of the elliptical conduit along the fault are about 20 km and 5 km respectively. The major axis of the ellipsoidal enhanced conducting pathway is parallel to a NS fault segment off the main NE-SW fault system, which suggests that this fault segment is currently controlling the magmatic fluids ascent. Down to about 15-18 km bmsl the crust becomes widespread conductive, coinciding with a flat body of low shear-wave velocity (<3.2 km/s) under the Colima Volcano at similar depths. This low density and low resistivity flat lying mush reservoir contains H2O-rich melts prone to be polarized electrically and to polarize the surrounding medium. The supporting evidence suggest that the recent and near-future activity of the CV is closely related to a deep flat magmatic source rather than to a shallow magmatic chamber, and that the triggering mechanism of recurrent magmatic activity of the CV may have an electrical component.  

Publisher

Universidad Nacional Autonoma de Mexico

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3