Use of Artificial Neural Networks to predict strong ground motion duration of interplate and inslab mexican Earthquakes for soft and firm soils

Author:

Flores-Mendoza Rigoberto,Rodríguez-Alcántara Josué Uriel,Pozos-Estrada Adrian,Gómez Roberto

Abstract

Artificial neural network models are developed to predict strong ground motion duration of sub- duction events for soft and firm soils. To train the artificial neural network a database with a total of 3153 seismic records with two horizontal components for interplate and inslab earthquakes is employed. The principal component method is used to carry out a dimensionality reduction of the input parameters to develop the artificial neural network models. The predicted values of the strong ground motion duration trained by the artificial neural network models are compared with those estimated with empirical expressions. In general, the strong ground motion duration predicted with the artificial neural networks follows the same tendency of that calculated with the empirical equa- tions, although in some cases, the strong ground motion duration predicted by using the artificial neural network models presents sudden changes in its behavior. For this reason, it is recommended to carry out several verifications of the trained artificial neural network models before using them for further engineering applications, for example the simulation of synthetic records or the evaluation of seismic damage indices.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Energy,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3