Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans

Author:

Codoni Veronica12,Blum Yuna3,Civelek Mete34,Proust Carole12,Franzén Oscar56,Björkegren Johan L M567,Le Goff Wilfried12,Cambien Francois12,Lusis Aldons J3,Trégouët David-Alexandre112, ,

Affiliation:

1. Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1166, F-75013 Paris, France

2. Institute for Cardiometabolism and Nutrition, F-75013 Paris, France

3. Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095

4. Department of Biomedical Engineering, Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908

5. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029

6. Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029

7. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 141 52, Sweden

Abstract

Abstract Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules). Six modules were found preserved (P < 10−4) in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR) = 8.9 × 10−11] enriched for genes belonging to the oxidative phosphorylation (OXPHOS) pathway. This pathway was also found significantly (FDR < 10−4) enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10−8) the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3