The Genetic Architecture of Biofilm Formation in a Clinical Isolate of Saccharomyces cerevisiae

Author:

Granek Joshua A1,Murray Debra1,Kayrkçi Ömür1,Magwene Paul M1

Affiliation:

1. Department of Biology and Center for Systems Biology, Duke University, Durham, North Carolina 27708

Abstract

Abstract Biofilms are microbial communities that form on surfaces. They are the primary form of microbial growth in nature and can have detrimental impacts on human health. Some strains of the budding yeast Saccharomyces cerevisiae form colony biofilms, and there is substantial variation in colony architecture between biofilm-forming strains. To identify the genetic basis of biofilm variation, we developed a novel version of quantitative trait locus mapping, which leverages cryptic variation in a clinical isolate of S. cerevisiae. We mapped 13 loci linked to heterogeneity in biofilm architecture and identified the gene most closely associated with each locus. Of these candidate genes, six are members of the cyclic AMP–protein kinase A pathway, an evolutionarily conserved cell signaling network. Principal among these is CYR1, which encodes the enzyme that catalyzes production of cAMP. Through a combination of gene expression measurements, cell signaling assays, and gene overexpression, we determined the functional effects of allelic variation at CYR1. We found that increased pathway activity resulting from protein coding and expression variation of CYR1 enhances the formation of colony biofilms. Four other candidate genes encode kinases and transcription factors that are targets of this pathway. The protein products of several of these genes together regulate expression of the sixth candidate, FLO11, which encodes a cell adhesion protein. Our results indicate that epistatic interactions between alleles with both positive and negative effects on cyclic AMP–protein kinase A signaling underlie much of the architectural variation we observe in colony biofilms. They are also among the first to demonstrate genetic variation acting at multiple levels of an integrated signaling and regulatory network. Based on these results, we propose a mechanistic model that relates genetic variation to gene network function and phenotypic outcomes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3