Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes

Author:

Gao Ning121,Martini Johannes W R21,Zhang Zhe1,Yuan Xiaolong1,Zhang Hao1,Simianer Henner2,Li Jiaqi1

Affiliation:

1. National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China

2. Animal Breeding and Genetics Group, University of Goettingen, 37075, Germany

Abstract

Abstract Gao et al. propose several approaches to incorporate gene annotation into genomic prediction and evaluate these new methods on populations..... Today, genomic prediction (GP) is an established technology in plant and animal breeding programs. Current standard methods are purely based on statistical considerations but do not make use of the abundant biological knowledge, which is easily available from public databases. Major questions that have to be answered before biological prior information can be used routinely in GP approaches are which types of information can be used, and at which points they can be incorporated into prediction methods. In this study, we propose a novel strategy to incorporate gene annotation into GP of complex phenotypes by defining haploblocks according to gene positions. Haplotype effects are then modeled as categorical or as numerical allele dosage variables. The underlying concept of this approach is to build the statistical model on variables representing the biologically functional units. We evaluate the new methods with data from a heterogeneous stock mouse population, the Drosophila Genetic Reference Panel (DGRP), and a rice breeding population from the Rice Diversity Panel. Our results show that using gene annotation to define haploblocks often leads to a comparable, but for some traits to a higher, predictive ability compared to SNP-based models or to haplotype models that do not use gene annotation information. Modeling gene interaction effects can further improve predictive ability. We also illustrate that the additional use of markers that have not been mapped to any gene in a second separate relatedness matrix does in many cases not lead to a relevant additional increase in predictive ability when the first matrix is based on haploblocks defined with gene annotation data, suggesting that intergenic markers only provide redundant information on the considered data sets. Therefore, gene annotation information seems to be appropriate to perceive the importance of DNA segments. Finally, we discuss the effects of gene annotation quality, marker density, and linkage disequilibrium on the performance of the new methods. To our knowledge, this is the first work that incorporates epistatic interaction or gene annotation into haplotype-based prediction approaches.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3