Usefulness of Multiparental Populations of Maize (Zea mays L.) for Genome-Based Prediction

Author:

Lehermeier Christina1,Krämer Nicole1,Bauer Eva1,Bauland Cyril2,Camisan Christian3,Campo Laura4,Flament Pascal3,Melchinger Albrecht E5,Menz Monica6,Meyer Nina6,Moreau Laurence2,Moreno-González Jesús4,Ouzunova Milena7,Pausch Hubert8,Ranc Nicolas6,Schipprack Wolfgang5,Schönleben Manfred1,Walter Hildrun1,Charcosset Alain2,Schön Chris-Carolin1

Affiliation:

1. Plant Breeding, Technische Universität München, 85354 Freising, Germany

2. INRA, UMR de Génétique Végétale, 91190 Gif-sur-Yvette, France

3. Limagrain Europe, 63720 Chappes, France

4. Centro Investigacións Agrarias Mabegondo (CIAM), 15080 La Coruña, Spain

5. Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany

6. Syngenta S.A.S., 31790 Saint-Sauveur, France

7. KWS SAAT AG, 37555 Einbeck, Germany

8. Animal Breeding, Technische Universität München, 85354 Freising, Germany

Abstract

Abstract The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11 related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, predictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the genetic structure and required sample size of data sets used for model training.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3