X–Y Interactions Underlie Sperm Head Abnormality in Hybrid Male House Mice

Author:

Campbell Polly1,Nachman Michael W

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721

Abstract

Abstract The genetic basis of hybrid male sterility in house mice is complex, highly polygenic, and strongly X linked. Previous work suggested that there might be interactions between the Mus musculus musculus X and the M. m. domesticus Y with a large negative effect on sperm head morphology in hybrid males with an F1 autosomal background. To test this, we introgressed the M. m. domesticus Y onto a M. m. musculus background and measured the change in sperm morphology, testis weight, and sperm count across early backcross generations and in 11th generation backcross males in which the opportunity for X–autosome incompatibilities is effectively eliminated. We found that abnormality in sperm morphology persists in M. m. domesticus Y introgression males, and that this phenotype is rescued by M. m. domesticus introgressions on the X chromosome. In contrast, the severe reductions in testis weight and sperm count that characterize F1 males were eliminated after one generation of backcrossing. These results indicate that X–Y incompatibilities contribute specifically to sperm morphology. In contrast, X–autosome incompatibilities contribute to low testis weight, low sperm count, and sperm morphology. Restoration of normal testis weight and sperm count in first generation backcross males suggests that a small number of complex incompatibilities between loci on the M. m. musculus X and the M. m. domesticus autosomes underlie F1 male sterility. Together, these results provide insight into the genetic architecture of F1 male sterility and help to explain genome-wide patterns of introgression across the house mouse hybrid zone.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference68 articles.

1. Sperm-related phenotypes implicated in both maitenance and breakdown of a natural species barrier in the house mouse.;Albrechtová;Proc. Biol. Sci.,2012

2. The protamine family of sperm nuclear proteins.;Balhorn;Genome Biol.,2007

3. Heredity and variation in modern lights;Bateson,1909

4. Postzygotic isolation between the two European subspecies of the house mouse: estimates from fertility patterns in wild and laboratory-bred hybrids.;Britton-Davidian;Biol. J. Linn. Soc. Lond.,2005

5. Genetics of reproductive isolation in the Drosophila simulans clade: complex epistasis underlying hybrid male sterility.;Cabot;Genetics,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3