Deleterious Mutations and Selection for Sex in Finite Diploid Populations

Author:

Roze Denis12,Michod Richard E3

Affiliation:

1. Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7144, Adaptation et Diversité en Milieu Marin and

2. Université Pierre et Marie Curie (Paris VI), 29682 Roscoff, France and

3. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721

Abstract

Abstract In diploid populations, indirect benefits of sex may stem from segregation and recombination. Although it has been recognized that finite population size is an important component of selection for recombination, its effects on selection for segregation have been somewhat less studied. In this article, we develop analytical two- and three-locus models to study the effect of recurrent deleterious mutations on a modifier gene increasing sex, in a finite diploid population. The model also incorporates effects of mitotic recombination, causing loss of heterozygosity (LOH). Predictions are tested using multilocus simulations representing deleterious mutations occurring at a large number of loci. The model and simulations show that excess of heterozygosity generated by finite population size is an important component of selection for sex, favoring segregation when deleterious alleles are nearly additive to dominant. Furthermore, sex tends to break correlations in homozygosity among selected loci, which disfavors sex when deleterious alleles are either recessive or dominant. As a result, we find that it is difficult to maintain costly sex when deleterious alleles are recessive. LOH tends to favor sex when deleterious mutations are recessive, but the effect is relatively weak for rates of LOH corresponding to current estimates (of the order 10−4−10−5).

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3