Scalable Nonparametric Prescreening Method for Searching Higher-Order Genetic Interactions Underlying Quantitative Traits

Author:

Kontio Juho A J1,Sillanpää Mikko J12

Affiliation:

1. Research Unit of Mathematical Sciences, Biocenter Oulu, University of Oulu, 90014, Finland and

2. Infotech Oulu, University of Oulu, 90014, Finland

Abstract

Abstract The Gaussian process (GP) regression is theoretically capable of capturing higher-order gene-by-gene interactions important to trait variation non-exhaustively with high accuracy. Unfortunately, GP approach is scalable only for 100-200 genes and thus, not applicable for high... Gaussian process (GP)-based automatic relevance determination (ARD) is known to be an efficient technique for identifying determinants of gene-by-gene interactions important to trait variation. However, the estimation of GP models is feasible only for low-dimensional datasets (∼200 variables), which severely limits application of the GP-based ARD method for high-throughput sequencing data. In this paper, we provide a nonparametric prescreening method that preserves virtually all the major benefits of the GP-based ARD method and extends its scalability to the typical high-dimensional datasets used in practice. In several simulated test scenarios, the proposed method compared favorably with existing nonparametric dimension reduction/prescreening methods suitable for higher-order interaction searches. As a real-data example, the proposed method was applied to a high-throughput dataset downloaded from the cancer genome atlas (TCGA) with measured expression levels of 16,976 genes (after preprocessing) from patients diagnosed with acute myeloid leukemia.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3