Nonparametric Bayesian Variable Selection With Applications to Multiple Quantitative Trait Loci Mapping With Epistasis and Gene–Environment Interaction

Author:

Zou Fei1,Huang Hanwen1,Lee Seunggeun1,Hoeschele Ina2

Affiliation:

1. Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599 and

2. Virginia Bioinformatics Institute and Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Abstract

Abstract The joint action of multiple genes is an important source of variation for complex traits and human diseases. However, mapping genes with epistatic effects and gene–environment interactions is a difficult problem because of relatively small sample sizes and very large parameter spaces for quantitative trait locus models that include such interactions. Here we present a nonparametric Bayesian method to map multiple quantitative trait loci (QTL) by considering epistatic and gene–environment interactions. The proposed method is not restricted to pairwise interactions among genes, as is typically done in parametric QTL analysis. Rather than modeling each main and interaction term explicitly, our nonparametric Bayesian method measures the importance of each QTL, irrespective of whether it is mostly due to a main effect or due to some interaction effect(s), via an unspecified function of the genotypes at all candidate QTL. A Gaussian process prior is assigned to this unknown function. In addition to the candidate QTL, nongenetic factors and covariates, such as age, gender, and environmental conditions, can also be included in the unspecified function. The importance of each genetic factor (QTL) and each nongenetic factor/covariate included in the function is estimated by a single hyperparameter, which enters the covariance function and captures any main or interaction effect associated with a given factor/covariate. An initial evaluation of the performance of the proposed method is obtained via analysis of simulated and real data.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3