Amplification of the Gene for Isoleucyl–tRNA Synthetase Facilitates Adaptation to the Fitness Cost of Mupirocin Resistance in Salmonella enterica

Author:

Paulander Wilhelm1,Andersson Dan I1,Maisnier-Patin Sophie12

Affiliation:

1. Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden and

2. Department of Microbiology, College of Biological Sciences, University of California, Davis, California 95616

Abstract

Abstract Mutations that cause resistance to antibiotics in bacteria often reduce growth rate by impairing some essential cellular function. This growth impairment is expected to counterselect resistant organisms from natural populations following discontinuation of antibiotic therapy. Unfortunately (for disease control) bacteria adapt and improve their growth rate, often without losing antibiotic resistance. This adaptation process was studied in mupirocin-resistant (MupR) strains of Salmonella enterica. Mupirocin (Mup) is an isoleucyl–adenylate analog that inhibits the essential enzyme, isoleucyl–tRNA synthetase (IleRS). Mutations causing MupR alter IleRS and reduce growth rate. Fitness is restored by any of 23 secondary IleRS amino acid substitutions, 60% of which leave resistance unaffected. Evidence that increased expression of the original mutant ileS gene (MupR) also improves fitness while maintaining resistance is presented. Expression can be increased by amplification of the ileS gene (more copies) or mutations that improve the ileS promoter (more transcription). Some adapted strains show both ileS amplification and an improved promoter. This suggests a process of adaptation initiated by common amplifications and followed by later acquisition of rare point mutations. Finally, a point mutation in one copy relaxes selection and allows loss of defective ileS copies. This sequence of events is demonstrated experimentally. A better understanding of adaptation can explain why antibiotic resistance persists in bacterial populations and may help identify drugs that are least subject to this problem.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3