Equilibrium Processes Cannot Explain High Levels of Short- and Medium-Range Linkage Disequilibrium in the Domesticated Grass Sorghum bicolor

Author:

Hamblin Martha T1,Salas Fernandez Maria G1,Casa Alexandra M1,Mitchell Sharon E1,Paterson Andrew H2,Kresovich Stephen1

Affiliation:

1. Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853 and

2. Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602

Abstract

Abstract Patterns of linkage disequilibrium (LD) are of interest because they provide evidence of both equilibrium (e.g., mating system or long-term population structure) and nonequilibrium (e.g., demographic or selective) processes, as well as because of their importance in strategies for identifying the genetic basis of complex phenotypes. We report patterns of short and medium range (up to100 kb) LD in six unlinked genomic regions in the partially selfing domesticated grass, Sorghum bicolor. The extent of allelic associations in S. bicolor, as assessed by pairwise measures of LD, is higher than in maize but lower than in Arabidopsis, in qualitative agreement with expectations based on mating system. Quantitative analyses of the population recombination parameter, ρ, however, based on empirical estimates of rates of recombination, mutation, and self-pollination, show that LD is more extensive than expected under a neutral equilibrium model. The disparity between ρ and the population mutation parameter, θ, is similar to that observed in other species whose population history appears to be complex. From a practical standpoint, these results suggest that S. bicolor is well suited for association studies using reasonable numbers of markers, since LD typically extends at least several kilobases but has largely decayed by 15 kb.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3