Natural Variation in the Multidrug Efflux Pump SGE1 Underlies Ionic Liquid Tolerance in Yeast

Author:

Higgins Douglas A121,Young Megan K M3,Tremaine Mary3,Sardi Maria34,Fletcher Jenna M3,Agnew Margaret3,Liu Lisa3,Dickinson Quinn3,Peris David341,Wrobel Russell L34,Hittinger Chris Todd34,Gasch Audrey P34,Singer Steven W15,Simmons Blake A12,Landick Robert367,Thelen Michael P12,Sato Trey K38

Affiliation:

1. Deconstruction Division, Joint BioEnergy Institute, Emeryville, California 94608

2. Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, California 94550

3. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726

4. Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53726

5. Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, California 94720

6. Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53726

7. Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53726

8. Sandia National Laboratories, Livermore, California 94550

Abstract

Abstract Imidazolium ionic liquids (IILs) have a range of biotechnological applications, including as pretreatment solvents that extract cellulose from plant biomass for microbial fermentation into sustainable bioenergy. However, residual levels of IILs, such as 1-ethyl-3-methylimidazolium chloride ([C2C1im]Cl), are toxic to biofuel-producing microbes, including the yeast Saccharomyces cerevisiae. S. cerevisiae strains isolated from diverse ecological niches differ in genomic sequence and in phenotypes potentially beneficial for industrial applications, including tolerance to inhibitory compounds present in hydrolyzed plant feedstocks. We evaluated >100 genome-sequenced S. cerevisiae strains for tolerance to [C2C1im]Cl and identified one strain with exceptional tolerance. By screening a library of genomic DNA fragments from the [C2C1im]Cl-tolerant strain for improved IIL tolerance, we identified SGE1, which encodes a plasma membrane multidrug efflux pump, and a previously uncharacterized gene that we named ionic liquid tolerance 1 (ILT1), which encodes a predicted membrane protein. Analyses of SGE1 sequences from our panel of S. cerevisiae strains together with growth phenotypes implicated two single nucleotide polymorphisms (SNPs) that associated with IIL tolerance and sensitivity. We confirmed these phenotypic effects by transferring the SGE1 SNPs into a [C2C1im]Cl-sensitive yeast strain using CRISPR/Cas9 genome editing. Further studies indicated that these SNPs affect Sge1 protein stability and cell surface localization, influencing the amount of toxic IILs that cells can pump out of the cytoplasm. Our results highlight the general potential for discovering useful biotechnological functions from untapped natural sequence variation and provide functional insight into emergent SGE1 alleles with reduced capacities to protect against IIL toxicity.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3