Convergent Evolution in the Genetic Basis of Müllerian Mimicry in Heliconius Butterflies

Author:

Baxter Simon W1,Papa Riccardo2,Chamberlain Nicola3,Humphray Sean J4,Joron Mathieu5,Morrison Clay6,ffrench-Constant Richard H3,McMillan W Owen6,Jiggins Chris D1

Affiliation:

1. Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom

2. University of California, Irvine, California 92697

3. University of Exeter, Cornwall TR10 9EZ, United Kingdom

4. The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom

5. Institute for Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom and

6. Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695

Abstract

Abstract The neotropical butterflies Heliconius melpomene and H. erato are Müllerian mimics that display the same warningly colored wing patterns in local populations, yet pattern diversity between geographic regions. Linkage mapping has previously shown convergent red wing phenotypes in these species are controlled by loci on homologous chromosomes. Here, AFLP bulk segregant analysis using H. melpomene crosses identified genetic markers tightly linked to two red wing-patterning loci. These markers were used to screen a H. melpomene BAC library and a tile path was assembled spanning one locus completely and part of the second. Concurrently, a similar strategy was used to identify a BAC clone tightly linked to the locus controlling the mimetic red wing phenotypes in H. erato. A methionine rich storage protein (MRSP) gene was identified within this BAC clone, and comparative genetic mapping shows red wing color loci are in homologous regions of the genome of H. erato and H. melpomene. Subtle differences in these convergent phenotypes imply they evolved independently using somewhat different developmental routes, but are nonetheless regulated by the same switch locus. Genetic mapping of MRSP in a third related species, the “tiger” patterned H. numata, has no association with wing patterning and shows no evidence for genomic translocation of wing-patterning loci.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3