Variation in Genetic Relatedness Is Determined by the Aggregate Recombination Process

Author:

Veller Carl1,Edelman Nathaniel B1,Muralidhar Pavitra1,Nowak Martin A12

Affiliation:

1. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

2. Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Abstract

Abstract The genomic proportion that two relatives share identically by descent—their genetic relatedness—can vary depending on the history of recombination and segregation in their pedigree. Previous calculations of the variance of genetic relatedness have defined genetic relatedness as the proportion of total genetic map length (cM) shared by relatives, and have neglected crossover interference and sex differences in recombination. Here, we consider genetic relatedness as the proportion of the total physical genome (bp) shared by relatives, and calculate its variance for general pedigree relationships, making no assumptions about the recombination process. For the relationships of grandparent-grandoffspring and siblings, the variance of genetic relatedness is a simple decreasing function of r¯, the average proportion of locus pairs that recombine in meiosis. For general pedigree relationships, the variance of genetic relatedness is a function of metrics analogous to r¯. Therefore, features of the aggregate recombination process that affect r¯ and analogs also affect variance in genetic relatedness. Such features include the number of chromosomes and heterogeneity in their size, the number of crossovers and their spatial organization along chromosomes, and sex differences in recombination. Our calculations help to explain several recent observations about variance in genetic relatedness, including that it is reduced by crossover interference (which is known to increase r¯). Our methods further allow us to calculate the neutral variance of ancestry among F2s in a hybrid cross, enabling precise statistical inference in F2-based tests for various kinds of selection.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3