Resistance Gene Replacement in the Mosquito Culex pipiens: Fitness Estimation From Long-Term Cline Series

Author:

Labbé Pierrick12,Sidos Nicolas3,Raymond Michel1,Lenormand Thomas2

Affiliation:

1. Laboratoire Génétique et Environnement, Institut des Sciences de l'Evolution (UMR CNRS 5554), Université de Montpellier II, F-34095 Montpellier Cedex 05, France

2. Centre d'Ecologie Fonctionnelle et Evolutive (CEFE-UMR 5175 CNRS), F-34293 Montpellier Cedex 05, France and

3. Entente Interdépartementale de Démoustication Méditerranée, 34184 Montpellier Cedex 4, France

Abstract

Abstract How adaptation appears and is later refined by natural selection has been the object of intense theoretical work. However, the testing of these theories is limited by our ability to estimate the strength of natural selection in nature. Using a long-term cline series, we estimate the selection coefficients acting on different alleles at the same locus to analyze the allele replacement observed in the insecticide resistance gene Ester in the mosquito Culex pipiens in the Montpellier area, southern France. Our method allows us to accurately account for the resistance allele replacement observed in this area since 1986. A first resistance allele appeared early, which was replaced by a second resistance allele providing the same advantage but at a lower cost, itself being replaced by a third resistance allele with both higher advantage and cost. It shows that amelioration of the adaptation (here resistance to insecticide) through allele replacement was successively achieved by selection of first a generalist allele (i.e., with a low fitness variance across environments) and later a specialist allele (i.e., with a large fitness variance across environments). More generally, we discuss how precise estimates of the strength of selection obtained from field data help us understand the process of amelioration of adaptation.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3