Reducing Carbon Emission, Groundwater Over-Exploitation and Energy Consumption on Agricultural Lands by Off-Farm Water Management Practices: Modernization of Surface Water Distribution Systems

Author:

Noorbeh P., ,Stepanian R.,Noorbeh M.,Movahedinia M.,Hashemy Shahdany S. M., , , ,

Abstract

A wide range of endeavors has been made to propose various approaches to reduce Greenhouse gas emissions in the agricultural sector. The present study investigates the impacts of Surface Water Distribution Systems (SWDS) modernization in reducing groundwater overexploitation, energy consumption, and carbon emission in the agriculture sector. Four modernization alternatives, including an improved manual-based system (A1, A2), off-line, and real-time automatic control systems (A3, A4), are developed and tested on a real test case in Central Iran, which is confronted with severe water shortages. The results reveal that SWDS’s operating system modernization improves 4 ~ 21% surface water distribution through the alternatives A1 ~ A4. This surface water distribution enhancement led to groundwater over-extraction reduction. Spatial analysis reveals that 0.075, 0.100, 0.281, and 0.470 of the irrigation district’s cultivated area was thoroughly fulfilled by the delivered surface water and no need for groundwater extraction due to alternatives A1 ~ A4, respectively. Closure of several active tubewells up to 1,668 semi-deep and 497 deep tube-well were verified. SWDS’ modernization led to 5, 7, 20, and 30% of energy consumption and consequently 1,864.90, 2,714.33, 8,427.19, and 12,674.32 tC ha-1 carbon emission reduction in alternatives A1 ~ A4, respectively. This study’s results show that modernization of off-farm operating systems - responsible for surface water conveyance and distribution from a dam reservoir to farms - resulted in significant environmental benefits through improving the reliability of systems supplied by surface water and reducing the tendency of the farmers to groundwater resources.

Publisher

International Society for Environmental Information Science (ISEIS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3