Composted Yard Waste as a Component of Container Substrates

Author:

Beeson R.C.1

Affiliation:

1. Central Florida Research & Education Center, University of Florida—IFAS, 2700 East Celery Ave., Sanford, FL 32771

Abstract

Abstract Rhododendron indicum (L.) Sweet ‘Due du Rohan’ and Pittosporum tobira variegata Ait. were produced in 10.2 liter (#3) containers in substrates consisting of 20, 40, 60, and 80% (v/v) composted yard waste mixed with pine bark and coarse sand. Plant growth, substrate physical properties, and N and P leachate were compared with a control substrate of pine bark fines:sledge peat:sand (3:1:1 by vol). Shoot growth of plants in compost substrates was similar or better than control plants and greater with daily irrigation compared to alternate day irrigation. Root growth and percent air porosity declined as compost composition and waterholding capacity increased. Total porosity was generally consistent throughout the study. Irrigation regime had no effect on root growth nor substrate physical properties. Ammonium, NO3-N, and P concentrations in leachates varied with substrate and time following topdressing with controlled release fertilizer. Both species grew best in the 40% compost, 50% pine bark, and 10% sand substrate.

Publisher

Horticultural Research Institute

Subject

Horticulture,Environmental Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3