DEVELOPMENT OF HIGH PERFORMANCE RUBBER COMPOSITES FROM ALKOXIDE-BASED SILICA AND SOLUTION STYRENE–BUTADIENE RUBBER

Author:

Vaikuntam Sankar Raman12,Bhagavatheswaran Eshwaran Subramani12,Stöckelhuber Klaus Werner1,Wießner Sven12,Heinrich Gert12,Das Amit13

Affiliation:

1. Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Strasse 6, 01069 Dresden, Germany

2. Technische Universität Dresden, Institut für Werkstoffwissenschaft, 01062 Dresden, Germany

3. Technical University of Tampere, Korkeakoulunkatu 16, 33101 Tampere, Finland

Abstract

ABSTRACT The solution SBR and silica-based composites are prepared by hydrolysis of tetraethylorthosilicate in the presence of an organic solution of SBR and n-butylamine as catalyst. Further addition of bis[3-(triethoxysilyl)propyl]tetrasulfide, a silane coupling agent, improves the performance and properties of the composites. All the results are compared with commercial precipitated silica at similar loading conditions. The generated silica particles from this alkoxide route resulted in lower Mooney viscosity of the compound and showed less filler flocculation compared with standard commercial precipitated silica in reference compounds. A detailed dynamic mechanical study also indicated that alkoxide silica in model tire compounds could offer a lower rolling resistance and a higher wet skid resistance compared to the reference. Other properties such as heat build-up, rebound resilience, and hysteresis loss were found to be very promising for alkoxide silica composites, too. The silica particles (aggregated) developed by the alkoxide method were relatively large (∼150–200 nm) compared with the primary particles of precipitated commercial silica. The synthesis of sol–gel silica particles in presence of the polymer allowed for the trapping of some polymer molecules inside the filler aggregates and therefore offers exceptional mechanical reinforcement of the rubber.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3