Affiliation:
1. 1Chemistry Division, Code 6120, Naval Research Laboratory, Washington, D.C. 20375-5000
2. 2Geo-Centers, Inc., Ft. Washington, Maryland 20744
Abstract
Abstract
The utilization of network structure to impart stable orientation to a rubbery material has been largely unexploited to date. It is demonstrated that the presence of a double network will amplify both the modulus and strain crystallizability of an elastomer, presumably without the disadvantages encountered in achieving these through simple increases in crosslink density. The high residual strains obtained via double-network formation are accompanied by surprisingly low levels of birefringence. The extent of molecular orientation necessary to engender high residual strain is evidently quite low, at least in so far as the former is reflected in a bulk macroscopic measurement such as birefringence. This low equilibrium birefringence, along with the absence of any measurable thermal crystallization effects, indicate that double networks are actually not highly oriented. As seen from their higher moduli and higher strain optical coefficients relative to single networks, and from their enhanced strain crystallizability, double networks are evidently very orientable. Investigation of this aspect of the behavior of double networks would likely prove fruitful, not only concerning these materials, but also with regard to obtaining a broader understanding of rubber elasticity. While the enhancement of strain-induced crystallization might suggest that rubbers with double networks will exhibit superior failure properties, this remains to be demonstrated. The crystallization results described herein clearly raise more questions than can presently be answered concerning the behavior of rubbers with double networks.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献