NUMERICAL IMPLEMENTATION OF THE TSCHOEGL–CHANG–BLOCH NONLINEAR VISCOELASTIC CONSTITUTIVE LAW FOR UNVULCANIZED CARBON BLACK–FILLED RUBBERS

Author:

Assaad Mahmoud C.1

Affiliation:

1. The Goodyear Tire & Rubber Company, Akron, OH 44309

Abstract

ABSTRACT Rubber engineering design analysis requires a fundamental understanding of the mechanical behavior of polymers, especially in their unvulcanized state. It necessitates the establishment of a three-dimensional constitutive material to account for the observed mechanical behavior. This law is required to produce realistic descriptions of the viscoelastic performance in a mathematically simple form that is easy to implement in engineering applications. This article describes the theory of the Tschoegl–Chang–Bloch time-dependent nonlinear viscoelastic constitutive law. The experimental verification of this law is provided under different deformation fields and multiple load steps. Laboratory test procedures to obtain the parameters required to describe the material under consideration are provided in detail. A recursive form of the constitutive law, suitable for finite element application, is derived and coded in the finite element commercial code Abaqus via the user subroutine UMAT. Comparisons between the experimental observations, the theoretical results, and the numerical data are drawn for simple test models examined under creep or shear relaxation conditions. The excellent agreements observed indicate the suitability of the governing law in analyzing viscoelastic problems of unvulcanized carbon black–filled rubbers.

Publisher

Rubber Division, ACS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3