Nanostructure in Traditional Composites of Natural Rubber and Reinforcing Silica

Author:

Kato Atsushi1,Kohjiya Shinzo2,Ikeda Yuko3

Affiliation:

1. 1Nissan Arc, Ltd., 1 Natsushima-cho, Yokosuka Kanagawa 237-0061, Japan; email,: kato@nissan-arc.co.jp.

2. 2Faculty of Science, Mahidol University, Nakhonpathom 73170, Thailand

3. 3Kyoto Institute of Technology, Graduate School of Science and Technology, Matsugasaki, Kyoto 606-8585, Japan

Abstract

Abstract Usual rubber products are a composite from rubber and nano-filler (e.g. silica, carbon black, etc.), and it is believed that the good dispersion of the nano-filler is the most important issue determining the performance of rubber vulcanizates. So far, transmission electron microscopy (TEM) has been the most useful tool for evaluation of the dispersion. However, it affords images of the sample projected on an x, y-plane, and the information along the thickness (z-axis) direction is missing. Three-dimensional (3D) visualization of nanometer structure of nano-filler dispersion in a rubber matrix is what all rubber technologists have been dreaming of. This dream is at last realized, and described in this paper. Use of TEM combined with computerized tomography (abbreviated as 3D-TEM in this paper, which is sometimes called electron tomography) enabled us to reconstruct 3D images of nano-filler (silica or carbon black) aggregates in rubbery matrix. It is said that nano-filler aggregate is a structure of size from 10 nm to 1000 nm, and agglomerate is an even larger structure. The 3D-TEM results on silica aggregates in natural rubber were presented in this paper. Silica aggregates were characterized by combining the 3D images of the vulcanizates. Furthermore, density of silica loaded natural rubber as an example of physical properties, was measured, and explained by the structure elucidated by 3D-TEM.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3