Mechanistic Investigations into the Adhesion between RFL-Treated Cords and Rubber. Part I: The Influence of Rubber Curatives

Author:

Wennekes W. B.1,Noordermeer J. W. M.1,Datta R. N.2

Affiliation:

1. 1Dutch Polymer Institute (DPI), P. O. Box 902, 5600 AX Eindhoven, The Netherlands; University of Twente, Faculty of Science and Technology, Dept. of Rubber Technology P.O. Box 217, 7500 AE Enschede, The Netherlands; email: j.w.m.noordermeer@utwente.nl

2. 2Teijin Twaron BV, Westervoortsedijk 73, 6800 TC Arnhem, The Netherlands

Abstract

Abstract The adhesion between virgin textile cords and rubber is always weak, because of significant differences between fiber and rubber in modulus, elongation, polarity as well as reactivity. In order to improve the adhesion, it is customary to use adhesive systems, which act as bridges between elastomer and reinforcement. These are commonly based on Resorcinol/Formaldehyde/Latex (RFL) dips. For polyester and aramid fibers, two dip systems are applied. The first one is an epoxy pre-dip and the second dip is a RFL dip again. Although several mechanisms are proposed to explain the role of RFL, the majority of these explanations are based on assumptions rather than proper scientific investigations. In this paper an attempt is made to understand the role of the rubber vulcanization system on RFL-to-rubber bonding as judged by measuring the H-pullout force, Strap Peel Adhesion Force (SPAF) and the mechanical properties of the compounds. A positive correlation is found between the optimum cure time (t90) of the rubber compounds and the pullout and peel force. In literature this is commonly explained by the lack of curative migration from the rubber into the dip when t90 is low. In the present paper curative migration is monitored by scanning electron microscopy coupled to an energy dispersive X-ray spectrometer (SEM-EDX). A strong enrichment of curatives in the RFL dip near the interface is observed. A high accelerator loading results in a low t90 of the rubber compound as well as a more pronounced enrichment of curatives in the dip near the interface. Therefore the drop in adhesion does not occur because of lack of curative migration from rubber to the RFL layer, but more likely due to overcure of the latex in the dip, causing a brittle layer resulting in low pullout and peel strengths.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3