Rubber-Thermoplastic Compositions. Part VIII. Nitrile Rubber Polyolefin Blends with Technological Compatibilization

Author:

Coran A. Y.1,Patel R.1

Affiliation:

1. 1Monsanto Company, Rubber Chemicals Research Laboratory, 260 Springside Dr., Akron, Ohio 44313

Abstract

Abstract The results of this work suggest a practical route to hot-oil-resistant thermoplastic elastomers based on NBR and a polyolefin resin (such as polypropylene). Although these two types of polymer are normally grossly incompatible with each other, a melt-mixed blend thereof is technologically improved by the presence of a small amount of a compatibilizing block copolymer which contains both polar and nonpolar segments. Ideally, the block copolymer should contain molecular segments of the types of polymers to be compatibilized. The compatibilizing block (graft) copolymer can form in situ during melt-mixing. Dynamic vulcanization (during melt-mixing) of a compatibilized NBR-polypropylene blend produces a thermoplastic elastomer with mechanical properties about as good as those of a corresponding composition of EPDM and polypropylene (two polymers which are nearly mutually compatible in a thermodynamic sense). The compatibilizing NBR-polypropylene graft copolymer might act by reducing (molten-state) interfacial tension at the NBR-polypropylene interface and also by increasing the interfacial adhesion in the “solidified-state” composition during its use. The hot-oil resistance of the compatibilized NBR-polypropylene thermoplastic vulcanizates is excellent. Also, the NBR-polypropylene compositions can be blended with thermoplastic vulcanizates based on EPDM and polypropylene to obtain thermoplastic elastomeric compositions which exhibit both good hot oil resistance and low temperature brittleness characteristics.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 256 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3