Spectroscopic Characterization of the Molecular Structure of Elastomeric Networks

Author:

Koenig Jack L.1

Affiliation:

1. 1Case Western Reserve University, Department of Macromolecular Science, Kent Hale Smith Bldg., Room 212, 10900 Euclid Avenue, Cleveland, OH 44106-7202; e-mail: jlk6@po.cwru.edu

Abstract

Abstract In vulcanization, chemical crosslinks are formed across elastomeric polymer chains improving both the strength and elastic properties of the rubber. An understanding of the formation, structure, and stability of vulcanizates is therefore very important. Solid-state NMR and NMR imaging have been effective methods to study many different aspects of vulcanization. In solid-state NMR, several peaks appear in the C-13 spectrum of vulcanized rubber. Through model studies, NMR analysis, and chemical shift additivity calculations, these peaks were assigned to their respective vulcanizate structures. Once this assignment was made, the concentration of each vulcanizate structure formed could be followed with time under a variety of different conditions. In unaccelerated sulfur vulcanization of natural rubber (NR) and polybutadiene rubber (BR), many inefficient (cyclic or intramolecular) structures were formed as compared to intermolecular crosslinks. In accelerated NR and BR sulfur vulcanization, NMR was used to study vulcanizate concentration dependence on (a) type of formulation (efficient, semi-efficient, or conventional), (b) type of accelerator, (c) extent of cure, and (d) different concentration of ingredients (sulfur, activator, etc.). Solid-state NMR was also used to study different parameters in butyl rubber and to identify elastomers in binary blends of chloroprene rubber (CR) and NR, CR and chlorosulfonated polyethylene (CSM), NR and CSM, and styrene—butadiene rubber (SBR) and acrylonitrile—butadiene rubber (NBR) as well as the tertiary blend of NR/SBR/BR. In several studies, the effect of filler (carbon black or silica) on vulcanization was studied. Additionally, the thermo-oxidative degradation of sulfur vulcanizates in NR with heating time and temperature was observed using NMR. NMR imaging has been useful in the determination of internal inhomogeneities arising from inadequate mixing, gradients in crosslinking chemistry, filler distribution, blends, and coagents.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3