General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal Oriented Pattern (LOOP)

Author:

Aminu Ali Ahmad,Nnanna Agwu Nwojo

Abstract

Digital image tampering detection has been an active area of research in recent times due to the ease with which digital image can be modified to convey false or misleading information. To address this problem, several studies have proposed forensics algorithms for digital image tampering detection. While these approaches have shown remarkable improvement, most of them only focused on detecting a specific type of image tampering. The limitation of these approaches is that new forensic method must be designed for each new manipulation approach that is developed. Consequently, there is a need to develop methods capable of detecting multiple tampering operations. In this paper, we proposed a novel general purpose image tampering scheme based on CNNs and Local Optimal Oriented Pattern (LOOP) which is capable of detecting five types of image tampering in both binary and multiclass scenarios. Unlike the existing deep learning techniques which used constrained pre-processing layers to suppress the effect of image content in order to capture image tampering traces, our method uses LOOP features, which can effectively subdue the effect image content, thus, allowing the proposed CNNs to capture the needed features to distinguish among different types of image tampering. Through a number of detailed experiments, our results demonstrate that the proposed general purpose image tampering method can achieve high detection accuracies in individual and multiclass image tampering detections respectively and a comparative analysis of our results with the existing state of the arts reveals that the proposed model is more robust than most of the exiting methods.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Texture Feature Extraction Using Local Optimal Oriented Pattern (LOOP);Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3