Domain Engineering for Applied Monocular Reconstruction of Parametric Faces

Author:

Borovikov Igor,Levonyan Karine,Rein Jon,Wrotek Pawel,Victor Nitish

Abstract

Many modern online 3D applications and videogames rely on parametric models of human faces for creating believable avatars. However, manually reproducing someone's facial likeness with a parametric model is difficult and time-consuming. Machine Learning solution for that task is highly desirable but is also challenging. The paper proposes a novel approach to the so-called Face-to-Parameters problem (F2P for short), aiming to reconstruct a parametric face from a single image. The proposed method utilizes synthetic data, domain decomposition, and domain adaptation for addressing multifaceted challenges in solving the F2P. The open-sourced codebase illustrates our key observations and provides means for quantitative evaluation. The presented approach proves practical in an industrial application; it improves accuracy and allows for more efficient models training. The techniques have the potential to extend to other types of parametric models.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3