Self-Pruning based Probabilistic Approach to Minimize Redundancy Overhead for Performance Improvement in MANET

Author:

Kumar Pallai Gyanendra,Sankaran Meenakshi,Kumar Rath Amiya

Abstract

The Broadcast storm problem causes severe interference, intense collision and channel contention, which greatly degrades the QoS performance metrics of the routing protocols. So, we suggest a neighbourhood coverage knowledge probabilistic broadcasting model (NCKPB) integrating with AODV protocol with knowledge on 2-hop neighbourhood coverage; a connectivity function to control a node’s forwarding probability of retransmission to alleviate significant overhead redundancy. Our objective is to minimize the broadcast RREQ overhead while ensuring fair retransmission bandwidth. We considered two more important measures called Saved Rebroadcast and Reachability. The outcomes of NCKPB, Fixed probability (FP) and Flooding (FL) routing schemes are examined under three major operating conditions, such as node density, mobility and traffic load. The NS-2 results demonstrate the efficacy of the proposed NCKPB model by illustrating its performance superiority over all key metrics such as redundancy overhead, end to end latency, throughput, reachability, saved rebroadcast and collision contrast to FP and FL.

Publisher

Academy and Industry Research Collaboration Center (AIRCC)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. I-SBA: an improved SBA broadcast protocol to minimize forwarding for wireless ad-hoc networks;International Journal of Information Technology;2024-04-27

2. E-SP: An Enhanced Self-Pruning Broadcast Protocol for Wireless Ad-hoc Networks using One-hop Neighbor Information;2023 6th International Conference on Electrical Information and Communication Technology (EICT);2023-12-07

3. WS-OLSR: Multipoint Relay Selection in VANET Networks using a Wingsuit Flying Search Algorithm;International journal of Computer Networks & Communications;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3