Machine learning aplicado al análisis del rendimiento de desarrollos de software

Author:

Gil-Vera Victor DanielORCID,Seguro-Gallego Cristian

Abstract

Las pruebas de rendimiento son determinantes para medir la calidad de los desarrollos de software, ya que permiten identificar aspectos que se deben mejorar en pro de alcanzar la satisfacción del cliente. El objetivo de este trabajo fue identificar la técnica óptima de Machine Learning para predecir si un desarrollo de software cumple o no con los criterios de aceptación del cliente. Se empleó una base de datos de información obtenida en pruebas de rendimiento a servicios web y la métrica de calidad F1-score. Se concluye que, a pesar de que la técnica de Random Forest obtuvo el mejor puntaje, no es correcto afirmar que sea la mejor técnica de Machine Learning; la cantidad y la calidad de los datos empleados en el entrenamiento desempeñan un papel de gran importancia, al igual que un procesamiento adecuado de la información. Performance tests are crucial to measure the quality of software developments, since they allow identifying aspects to be improved in order to achieve customer satisfaction. The objective of this research was to identify the optimal Machine Learning technique to predict whether or not a software development meets the customer's acceptance criteria. A dataset with information obtained from web services performance tests and the F1-score quality metric were used. This paper concludes that, although the Random Forest technique obtained the best score, it is not correct to state that it is the best Machine Learning technique; the quantity and quality of the data used in the training play a very important role, as well as an adequate processing of the information.

Publisher

Politecnico Colombiano Jaime Isaza Cadavid

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3