Using High Voltage Electrochemical Oxidation (HVEO) to obtain protective coatings, surface finishing on electronic materials

Author:

Nmadu D., ,Eli-Chukwu N.C.,Uma U. U.,Ogah O. E.,Parshuto A. A.,Eheduru M. I.,Ezichi S. I.,Ogbonna-Mba C. N., , , , , , ,

Abstract

Electronics and microelectronic components such as printed circuit board, capacitors, CPU heat sinks, hard drive, etc. commonly encounter harsh environmental conditions during their operational lifetime. To protect the electronics materials from conditions like corrosion, wear, humidity and contaminants, aluminium protective coating materials can be used. However, the behavior of materials in harsh environments and their effect on the reliability of electronics in industrial products has been studied only very little. Moreover, the changes in the parameters (current density, temperature and time) of commonly used aluminium under various conditions remain largely unknown. In this paper, High Voltage Electrochemical Oxidation (HVEO) was used to produce a high microhardness of 440HV and high surface thickness of up to 44µm oxide coatings on aluminum alloy AMg2 (analogues of 5052-H32 alloy) for electronic components protection. The process was carried out in electrolyte of tartaric acid and sulfuric acid as an electrolyte under constant duration for each sample and various anodizing temperatures and current densities. The samples used in the study were aluminum used for commercial electronics devices designed for use in harsh conditions.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FORMATION OF WEAR-RESISTANT ANODIC OXIDE FILMS ON SILICON ALUMINUM ALLOY FOR ELECTRICAL AND ELECTRONIC MATERIALS;High Temperature Material Processes An International Quarterly of High-Technology Plasma Processes;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3