The use of reference marks for precise tip positioning in scanning probe microscopy

Author:

Gulyaev P.V.1

Affiliation:

1. Udmurt Research Center, Ural Branch of the Russian Academy of Sciences, Izhevsk, Russian

Abstract

The article discusses techniques for the precise positioning of a probe tip on the surface under study in scanning probe microscopy. The precise tip positioning is of high importance when studying the same sample with various microscopes, probes, in various environments and conditions. It is offered that the precise positioning should be done by applying on the surface equidistant reference marks with a nanoindentor along a straight line. The article describes a procedure for shifting the microscope’s field of view for detecting the reference marks and subsequently moving the probe along the marks line. A reference marks recognition algorithm is presented. The algorithm is based on the image correlation analysis using a master mark image and the subsequent extraction of special points (at local maxima of the correlation coefficient). A descriptor of mutual distances between the special points and the Pearson coefficient (аs a quantitative criterion of recognition) are used for recognition. Three types of reference marks are considered: a circle, a circle with gradient filling, and a circle with continuous filling. It is shown that the number of the allocated special points can be significantly larger than that of the reference marks. A method for filtering special points is offered. The method is based on the threshold filtering of special points using values of the correlation coefficient. The filtering consists in excluding those special points in whose neighborhood the difference of the maximum and minimum of the correlation coefficient does not exceed a preset threshold. Results confirming the effectiveness of the offered filtering method are presented. Recommendations for choosing the parameters of the recognition and filtering algorithms are given.

Funder

Ural Branch, Russian Academy of Sciences

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3