Improving the efficiency of brain MRI image analysis using feature selection

Author:

Konevsky V.V., ,Blagov A.V.,Gaidel A.V.,Kapishnikov A.V.,Kupriyanov A.V.,Surovtsev E.N.,Asatryan D.G., , , , , , , ,

Abstract

This article discusses the possibility of improving the quality of analysis of MRI images of the brain in various scanning modes by using greedy feature selection algorithms. A total of five MRI sequences were reviewed. The texture features were formed using the MaZda software package. Using an algorithm for recursive feature selection, the accuracy of determining the type of tumor can be increased from 69% to 100%. With the help of the combined algorithm for the selection of signs, it was possible to increase the accuracy of determining the need for treatment of a patient from 60% to 75% and from 81% to 88% in the case of using an additional class of data for patients whose accurate result of treatment is unknown. The use of textural features in combination with a feature that is responsible for the type of meningioma made it possible to unambiguously determine the need for patient treatment.

Funder

Russian Foundation for Basic Research

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3