基于等离子体结构的太赫兹石墨烯电光调制器的机理分析
作者:
作者单位:

西安工程大学 电子信息学院,陕西 西安 710048

中图分类号:

O439


Mechanism analysis of terahertz graphene electro-optic modulator with plasma structure
Author:
Affiliation:

School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China

Fund Project:

Supported by Research Project of Xi’an Polytechnic University (107020492), and National Natural Science Foundation of China(51905405)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [10]
  • | | |
  • 文章评论
    摘要:

    基于等离子体共振机理,提出了一种包含金属/石墨烯/ Al2O3/石墨烯堆栈结构的等离子体脊型波导.基于光电效应的微观机理分析,通过设计波导结构和等离子体结构,优化调制器的性能.结果显示,电光调制器的插入损耗很低,工作在近红外波段,调制速率为730 GHz,能量损耗为0.7 fJ/bit,3-dB带宽为3.66 THz.

    Abstract:

    Based on the theory of plasmon resonance, we present a photon plasma ridge waveguide consisting of a metal/graphene/Al2O3/graphene stacking structure. The modulation performance is optimized through the design of the waveguide and plasma structures by analyzing the microscopic mechanism of photoelectric reaction. A low-insertion-loss near-infrared electro-optic modulator with a modulation rate of 730 GHz, energy consumption of 0.7 fJ/bit, and 3-dB bandwidth of 3.66 THz is achieved.

    参考文献
    [1] Mayorov A S , Gorbachev R V , Morozov S V , et al . Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett. 2011, 11: 2396.
    [2] Bolotin K I , Sikes K J , Jiang Z , et al . Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun. 2008, 146(9): 351-355.
    [3] Gan X , Shiue R J , Gao Y , et al . Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nat. Photonics, 2013, 7(11): 883-887.
    [4] Hong X , Posadas A , Zou K , et al . High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides[J]. Phys. Rev. Lett. 2009, 102(13): 136808.
    [5] Winnerl S. , Orlita M. , Plochocka P. , et al . Carrier relaxation in epitaxial graphene photoexcited near the Dirac point[J]. Phys. Rev. Lett. 2011, 107(23): 237401.
    [6] Nair R. R. , Blake P. , Grigorenko A. N. , et al . Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.
    [7] Kim K. S. , Zhao Y. , Jang H. , et al . Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
    [8] Bae S. , Kim H. , Lee Y. , et al . Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat. Nanotechnol. 2010, 5(8): 574-578.
    [9] Sorger V. J. , Amin R. , Khurgin J. B. , et al . Scaling vectors of attoJoule per bit modulators[J] J. Opt. 2018, 20(1): 014012.
    [10] Tait A. N. , Lima T. F. , Zhou E. , et al . Neuromorphic photonic networks using silicon photonic weight banks[J]. Sci. Rep. 2017,7: 7430.
    [11] Liu K. , Sun S. , Majumdar A. , et al . Fundamental Scaling Laws in Nanophotonics[J]. Sci. Rep. 2016, 6: 37419.
    [12] Liu M. , Yin X. , Ulinavila E. , et al . A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.
    [13] Liu M. , Yin X. , Zhang X. . Double-layer graphene optical modulator[J]. Nano Lett. 2012, 12(3): 1482-1485.
    [14] Koester S. J. , Li M. . High-speed waveguide-coupled graphene-on-graphene optical modulators[J]. Appl. Phys. Lett. 2012, 100(17): 611.
    [15] Kim K. , Choi J. Y. , Kim T. , et al . A role for graphene in silicon-based semiconductor devices[J]. Nature, 2011, 479(7373): 338-344.
    [16] Hu Y. T. , Pantouvaki M. , Brems S. , et al . Broadband 10 Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects[C]. IEEE International Electron Devices MeetingSan Francisco, 2014, 5.6.1-5.6.4
    [17] Dalir H , Xia Y , Wang Y , et al . Athermal broadband graphene optical modulator with 35 GHz speed[J]. Acs Photonics, 2016, 3(9): 1564-1568.
    [18] Lin H T , Song Y , Huang Y Z , et al . Chalcogenide glass-on-graphene photonics[C]. CLEO: Science and Innovations, California, 2017, STh4I.5.
    [19] Liu H Q , Liu P G , Bian L A , et al . Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack[J]. Opt. Express, 2018, 8(4): 761-774.
    [20] Hu X , Wang J . Design of graphene-based polarizationinsensitive optical modulator[J]. Nanophotonics, 2018, 7(3): 651-658.
    [21] Peng X L , Hao R , Ye Z , et al . Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect[J]. Opt. Lett. 2017, 42(9): 1736-1739.
    [22] Wang B B , Blaize S , Seok J B , et al . Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics[J]. IEEE J. Sel. Top. Quantum Electron. 2019, 25(3): 4600706.
    [23] Peng X L , Hao R , Ye Z , et al . Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect[J]. Opt. Lett. 2017, 42(9): 1736-1739.
    [24] Huang B , Lu W , Liu Z , et al . Low-energy high-speed plasmonic enhanced modulator using graphene[J]. Opt. Express, 2018, 26(6): 7358-7367.
    [25] Wang B B , Blaize S , Seok J B , et al . Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics[J]. IEEE J. Sel. Top. Quantum Electron, 2019, 25(3): 4600706.
    [26] Yao Y , Kats M A , Pt Geneve , et al . Broad electrical tuning of graphene-loaded plasmonic antennas[J].Nano Lett.2014,13(3): 1257-1264.
    [27] Kim J , Son H , Cho D J , et al . Electrical control of optical plasmon resonance with graphene[J]. Nano Lett. 2012, 12(11): 5598–5602.
    [28] Majumdar A , Kim J , Vuckovic J , et al . Electrical control of silicon photonic crystal cavity by graphene[J]. Nano Lett. 2013,13(2): 515-518.
    [29] Wang F , Zhang Y B , Tian C S , et al . Gate-variable optical transitions in graphene[J]. Science, 2008, 320: 206-209.
    [30] Maiti R , Haldar S , Majumdar D , et al . Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy[J]. Nanotechnology, 2017, 28: 075707.
    [31] Lee J , Novoselov K S , Shin H S . Interaction between metal and graphene: dependence on the layer number of graphene[J]. ACS Nano. 2011, 5: 608-612.
    [32] Scher S , Roulleau P , Molito F , et al . Quantum capacitance and density of states of graphene[J]. Appl. Phys. Lett. 2010, 96(15):152104.
    [33] Xia F , Perebeinos V , Lin Y M , et al . The origins and limits of metal-graphene junction resistance[J]. Nat. Nanotechnol, 2011, 6: 179-184.
    [34] Wu L , Liu H X , Li J B , et al . A 130 GHz electro-optic ring modulator with double-layer graphene[J]. Crystals, 2017, 7: 65.
    [35] Zhang Z , Wang J . Long-range hybrid wedge plasmonic waveguide [J]. Scientific Reports, 2014, 4: 6870.
    [36] Gui C , Wang J . Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area [J]. Scientific Reports, 2015, 5: 11457.
    [37] Zheng K , Zheng X , Dai Q , et al . Hybrid rid-slot-rid plasmonic waveguide with deep-subwavelength mode confinement and long propagation length [J]. AIP Adv. 2016, 6(8): 824-830.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李佳斌,王晓华,王文杰.基于等离子体结构的太赫兹石墨烯电光调制器的机理分析[J].红外与毫米波学报,2021,40(2):143~149]. LI Jia-Bin, WANG-Xiao-Hua, WANG Wen-Jie. Mechanism analysis of terahertz graphene electro-optic modulator with plasma structure[J]. J. Infrared Millim. Waves,2021,40(2):143~149.]

复制
分享
文章指标
  • 点击次数:804
  • 下载次数: 2739
  • HTML阅读次数: 372
  • 引用次数: 0
历史
  • 收稿日期:2020-02-09
  • 最后修改日期:2021-04-02
  • 录用日期:2020-03-09
  • 在线发布日期: 2021-03-30
文章二维码