|
|
700℃时效对9Cr ODS钢微观组织和力学性能的影响 |
汪建强1,2,3, 刘威峰4, 刘生2,3, 徐斌2,3, 孙明月2,3( ), 李殿中3 |
1 中国科学技术大学 材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 3 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 4 北京理工大学 重庆创新中心 重庆 401135 |
|
Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel |
WANG Jianqiang1,2,3, LIU Weifeng4, LIU Sheng2,3, XU Bin2,3, SUN Mingyue2,3( ), LI Dianzhong3 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4 Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401135, China |
引用本文:
汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
Jianqiang WANG,
Weifeng LIU,
Sheng LIU,
Bin XU,
Mingyue SUN,
Dianzhong LI.
Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. Acta Metall Sin, 2024, 60(5): 616-626.
1 |
Liu C L. Development status and trend of global nuclear power[J]. Global Sci., Technol. Econ. Outlook, 2017, 32(5): 67
|
1 |
刘春龙. 全球核电发展现状及趋势[J]. 全球科技经济瞭望, 2017, 32(5): 67
|
2 |
Rong J, Liu Z. Development and prospect of advanced nuclear energy technology[J]. At. Energy Sci. Technol., 2020, 54: 1638
|
2 |
荣 健, 刘 展. 先进核能技术发展与展望[J]. 原子能科学技术, 2020, 54: 1638
|
3 |
Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
|
4 |
Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science[J]. Energy Policy, 2008, 36: 4323
doi: 10.1016/j.enpol.2008.09.059
|
5 |
Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities[J]. J. Nucl. Mater., 2008, 383: 189
doi: 10.1016/j.jnucmat.2008.08.044
|
6 |
Kurtz R J, Odette G R. Structural Alloys for Nuclear Energy Applications[M]. Amsterdam: Elsevier, 2019: 51
|
7 |
Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications[J]. Nucl. Fusion, 2017, 57: 092005
|
8 |
Massey C P, Hoelzer D T, Edmondson P D, et al. Stability of a model Fe-14Cr nanostructured ferritic alloy after long-term thermal creep[J]. Scr. Mater., 2019, 170: 134
doi: 10.1016/j.scriptamat.2019.06.001
|
9 |
Stan T, Wu Y, Ciston J, et al. Characterization of polyhedral nano-oxides and helium bubbles in an annealed nanostructured ferritic alloy[J]. Acta Mater., 2020, 183: 484
doi: 10.1016/j.actamat.2019.10.045
|
10 |
Odette G R. Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications[J]. JOM, 2014, 66: 2427
doi: 10.1007/s11837-014-1207-5
|
11 |
Yvon P, Le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: challenges and the path forward[J]. Nucl. Eng. Des., 2015, 294: 161
doi: 10.1016/j.nucengdes.2015.09.015
|
12 |
Ukai S, Ohtsuka S, Kaito K, et al. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors[A]. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Woodhead Publishing, 2017: 357
|
13 |
Peng Y Y, Yu L M, Liu Y C, et al. Effect of ageing treatment at 650oC on microstructure and properties of 9Cr-ODS steel[J]. Acta Metall. Sin., 2020, 56: 1075
|
13 |
彭艳艳, 余黎明, 刘永长 等. 650℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56: 1075
doi: 10.11900/0412.1961.2019.00445
|
14 |
Zhang G M, Zhou Z J, Mo K, et al. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy[J]. J. Nucl. Mater., 2019, 522: 212
doi: 10.1016/j.jnucmat.2019.05.023
|
15 |
Li S F, Zhou Z J, Wang P H, et al. Long-term thermal-aging stability of a 16Cr-oxide dispersion strengthened ferritic steel at 973 K[J]. Mater. Design, 2016, 90: 318
|
16 |
Oksiuta Z, Lewandowska M, Kurzydłowski K J. Mechanical properties and thermal stability of nanostructured ODS RAF steels[J]. Mech. Mater., 2013, 67: 15
doi: 10.1016/j.mechmat.2013.07.006
|
17 |
Zilnyk K D, Pradeep K G, Choi P, et al. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study[J]. J. Nucl. Mater., 2017, 492: 142
doi: 10.1016/j.jnucmat.2017.05.027
|
18 |
Sandim M J R, Filho I R S, Bredda E H, et al. Short communication on “Coarsening of Y-rich oxide particles in 9%Cr-ODS Eurofer steel annealed at 1350oC”[J]. J. Nucl. Mater., 2017, 484: 283
doi: 10.1016/j.jnucmat.2016.12.025
|
19 |
Renzetti R A, Sandim H R Z, Sandim M J R, et al. Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel[J]. Mater. Sci. Eng., 2011, A528: 1442
|
20 |
Cunningham N, Wu Y, Klingensmith D, et al. On the remarkable thermal stability of nanostructured ferritic alloys[J]. Mater. Sci. Eng., 2014, A613: 296
|
21 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy[J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
|
22 |
Zinkle S J. Challenges in developing materials for fusion technology—Past, present and future[J]. Fusion Sci. Technol., 2013, 64: 65
doi: 10.13182/FST13-631
|
23 |
Wang J Q, Liu S, Xu B, et al. Microstructural stability of a 9Cr oxide dispersion strengthened alloy under thermal aging at high temperatures[J]. J. Alloys Compd., 2023, 932: 167691
doi: 10.1016/j.jallcom.2022.167691
|
24 |
Yakel H L. Atom distributions in tau-carbide phases: Fe and Cr distributions in (Cr23 - x Fe x )C6 with x = 0, 0.74, 1.70, 4.13 and 7.36[J]. Acta Crystallogr. Sect., 1987, 43B: 230
|
25 |
Becker K, Ebert F. Die kristallstruktur einiger binärer carbide und nitride[J]. Z. Physik, 1925, 31: 268
doi: 10.1007/BF02980580
|
26 |
Godec M, Skobir Balantič D A. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures[J]. Sci. Rep., 2016, 6: 29734
doi: 10.1038/srep29734
pmid: 27406340
|
27 |
Baltušnikas A, Grybėnas A, Kriūkienė R, et al. Evolution of crystallographic structure of M23C6 carbide under thermal aging of P91 steel[J]. J. Mater. Eng. Perform., 2019, 28: 1480
doi: 10.1007/s11665-019-03935-1
|
28 |
Liu X, Miao Y B, Li M M, et al. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations[J]. Scr. Mater., 2018, 148: 33
doi: 10.1016/j.scriptamat.2018.01.018
|
29 |
Miller M K, Hoelzer D T, Kenik E A, et al. Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2015, 13: 387
doi: 10.1016/j.intermet.2004.07.036
|
30 |
Chen L Z, Li S F, Liao L, et al. Microstructure, tensile properties and thermal stability of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2019, 40(11): 124
|
30 |
陈灵芝, 李少夫, 廖 璐 等. 14Cr-ODS钢的显微组织和拉伸性能及热稳定性[J]. 材料热处理学报, 2019, 40(11): 124
|
31 |
Zhang Z P, Shi Q Z, Zhao Q, et al. Thermal aging behavior of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2020, 45(6): 153
|
31 |
张哲平, 史庆志, 赵 倩 等. 14Cr-ODS钢的热时效行为[J]. 材料热处理学报, 2020, 45(6): 153
|
32 |
Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates[J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
|
33 |
Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels[J]. Metall. Trans., 1991, 22A: 2225
|
34 |
Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957[J]. J. Nucl. Mater., 2004, 329-333: 338
doi: 10.1016/j.jnucmat.2004.04.085
|
35 |
Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h mechanical properties and microstructure[J]. Mater. Sci. Eng., 2020, A783: 139292
|
36 |
Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
|
37 |
Ramar A, Spätig P, Schäublin R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy[J]. J. Nucl. Mater., 2008, 382: 210
doi: 10.1016/j.jnucmat.2008.08.009
|
38 |
Primig S, Leitner H, Knabl W, et al. Textural evolution during dynamic recovery and static recrystallization of molybdenum[J]. Metall. Mater. Trans., 2012, 43A: 4794
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|