Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 616-626    DOI: 10.11900/0412.1961.2022.00558
  研究论文 本期目录 | 过刊浏览 |
700℃时效对9Cr ODS钢微观组织和力学性能的影响
汪建强1,2,3, 刘威峰4, 刘生2,3, 徐斌2,3, 孙明月2,3(), 李殿中3
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
3 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
4 北京理工大学 重庆创新中心 重庆 401135
Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel
WANG Jianqiang1,2,3, LIU Weifeng4, LIU Sheng2,3, XU Bin2,3, SUN Mingyue2,3(), LI Dianzhong3
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401135, China
引用本文:

汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
Jianqiang WANG, Weifeng LIU, Sheng LIU, Bin XU, Mingyue SUN, Dianzhong LI. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. Acta Metall Sin, 2024, 60(5): 616-626.

全文: PDF(5575 KB)   HTML
摘要: 

为探究近服役温度时效行为对ODS钢微观组织和力学性能的影响,通过SEM、TEM和拉伸性能测试等方法,研究了9Cr ODS钢在700℃时效不同时间后的碳化物(M23C6)、纳米氧化物演变和力学性能变化。结果表明:在时效初期(≤ 200 h),M23C6在晶界处呈条带状快速析出并聚集长大,纳米氧化物无明显变化;在时效中期(200和1000 h),M23C6和纳米氧化物稳定长大;在时效后期(2000和3000 h),M23C6达到亚微米级,纳米氧化物的平均尺寸和数密度趋于稳定,与初始态相比,其平均尺寸的增长率为19.7%,数密度的下降率为27.1%。因纳米氧化物对不断增殖位错的钉扎,在部分晶粒内出现了位错胞和回复亚晶。9Cr ODS钢的拉伸强度在时效初期快速下降。在时效中后期,虽然纳米氧化物平均尺寸增加、数密度降低,但其钉扎作用仍然显著,以及基体中不断增殖的位错使得材料的拉伸强度维持稳定,延伸率在时效1000和2000 h期间处于低谷。

关键词 9Cr ODS钢时效碳化物纳米氧化物力学性能    
Abstract

Compared to second- and third-generation nuclear power systems, the Generation IV fission and future fusion reactors have higher service temperatures and irradiation doses, as well as harsher corrosive conditions and complex alternating loads. The structural materials for advanced reactors need to be researched and developed further. The oxide dispersion strengthened (ODS) steel has excellent high-temperature performance and irradiation resistance and is considered a promising structural material for advanced nuclear power systems. To reveal the effect of aging on microstructure and mechanical properties of ODS steel at near-service temperatures, the evolution of carbide M23C6 and nano-oxide particles (NPs) as well as the changes in the mechanical properties of 9Cr ODS steel after aging at 700oC for varying durations were studied using SEM, TEM, and tensile testing. M23C6 rapidly precipitated along grain boundaries, gradually aggregated, and grew during early aging (≤ 200 h). While the NPs showed no noticeable change. During the midstages of aging (200 and 1000 h), NPs and carbides grew stably. In the later stages of aging (2000 and 3000 h), carbide particles grew to the micron scale. The average size and number density of the NPs tended to be stable. Compared to the initial 9Cr ODS steel, the growth rate of the average size was 19.7%, and the reduction rate of the number density was 27.1%. Dislocation cells and recovered subgrains appeared within some grains because of the pinning effect of NPs on continuous proliferation dislocations. The tensile strength rapidly decreased at the initial stages of aging. In the intermediate and later stages of aging, although the average size of the NPs increased and the number density decreased, its pinning effect was still prominent. Continuous proliferation dislocations were observed in the matrix, so the tensile strength remained stable. Furthermore, the tensile elongation was low during aging time of 1000 and 2000 h.

Key words9Cr ODS steel    aging    carbide    nano-oxide particle    mechanical property
收稿日期: 2022-11-01     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2018YFA0702900);国家自然科学基金项目(52173305);国家自然科学基金项目(52101061);国家自然科学基金项目(52233017);国家自然科学基金项目(52203384);中国博士后科学基金项目(2020M681004);中国博士后科学基金项目(2021M703276);中国科学院金属研究所创新基金项目(2022-PY12);中核集团领创项目;中国科学院青年创新促进会项目
通讯作者: 孙明月,mysun@imr.ac.cn,主要从事特殊钢与大锻件均质化成形技术研究
Corresponding author: SUN Mingyue, professor, Tel: 13604076598, E-mail: mysun@imr.ac.cn
作者简介: 汪建强,男,1992年生,博士生
图1  9Cr ODS钢热等静压后的初始态显微组织及选区电子衍射(SAED)花样
图2  9Cr ODS钢在700℃时效不同时间后的SEM像
图3  9Cr ODS钢在700℃时效不同时间后的STEM像及M23C6平均尺寸
图4  9Cr ODS钢在700℃时效1000 h的STEM像、相应的EDS面扫描图及颗粒A的SAED花样
图5  9Cr ODS钢在700℃时效不同时间后的纳米氧化物及其周围位错形貌
图6  9Cr ODS钢在700℃时效不同时间后的纳米氧化物尺寸分布
图7  9Cr ODS钢在700℃时效不同时间后的工程应力-应变曲线及力学性能
图8  9Cr ODS钢初始态及在700℃时效不同时间后的室温拉伸断口形貌
PointFeCrWCTiY
P140.8544.8411.302.950.060.00
P265.8030.482.920.680.120.01
P340.9947.3110.161.330.210.00
表1  图8f中颗粒P1~P3的EDS结果
图9  9Cr ODS钢初始态及在700℃时效不同时间后纳米氧化物平均尺寸和数密度的变化
图10  9Cr ODS钢在700℃时效的微观组织演变示意图
1 Liu C L. Development status and trend of global nuclear power[J]. Global Sci., Technol. Econ. Outlook, 2017, 32(5): 67
1 刘春龙. 全球核电发展现状及趋势[J]. 全球科技经济瞭望, 2017, 32(5): 67
2 Rong J, Liu Z. Development and prospect of advanced nuclear energy technology[J]. At. Energy Sci. Technol., 2020, 54: 1638
2 荣 健, 刘 展. 先进核能技术发展与展望[J]. 原子能科学技术, 2020, 54: 1638
3 Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
4 Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science[J]. Energy Policy, 2008, 36: 4323
doi: 10.1016/j.enpol.2008.09.059
5 Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities[J]. J. Nucl. Mater., 2008, 383: 189
doi: 10.1016/j.jnucmat.2008.08.044
6 Kurtz R J, Odette G R. Structural Alloys for Nuclear Energy Applications[M]. Amsterdam: Elsevier, 2019: 51
7 Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications[J]. Nucl. Fusion, 2017, 57: 092005
8 Massey C P, Hoelzer D T, Edmondson P D, et al. Stability of a model Fe-14Cr nanostructured ferritic alloy after long-term thermal creep[J]. Scr. Mater., 2019, 170: 134
doi: 10.1016/j.scriptamat.2019.06.001
9 Stan T, Wu Y, Ciston J, et al. Characterization of polyhedral nano-oxides and helium bubbles in an annealed nanostructured ferritic alloy[J]. Acta Mater., 2020, 183: 484
doi: 10.1016/j.actamat.2019.10.045
10 Odette G R. Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications[J]. JOM, 2014, 66: 2427
doi: 10.1007/s11837-014-1207-5
11 Yvon P, Le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: challenges and the path forward[J]. Nucl. Eng. Des., 2015, 294: 161
doi: 10.1016/j.nucengdes.2015.09.015
12 Ukai S, Ohtsuka S, Kaito K, et al. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors[A]. Structural Materials for Generation IV Nuclear Reactors[M]. Amsterdam: Woodhead Publishing, 2017: 357
13 Peng Y Y, Yu L M, Liu Y C, et al. Effect of ageing treatment at 650oC on microstructure and properties of 9Cr-ODS steel[J]. Acta Metall. Sin., 2020, 56: 1075
13 彭艳艳, 余黎明, 刘永长 等. 650℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56: 1075
doi: 10.11900/0412.1961.2019.00445
14 Zhang G M, Zhou Z J, Mo K, et al. The effect of thermal-aging on the microstructure and mechanical properties of 9Cr ferritic/martensitic ODS alloy[J]. J. Nucl. Mater., 2019, 522: 212
doi: 10.1016/j.jnucmat.2019.05.023
15 Li S F, Zhou Z J, Wang P H, et al. Long-term thermal-aging stability of a 16Cr-oxide dispersion strengthened ferritic steel at 973 K[J]. Mater. Design, 2016, 90: 318
16 Oksiuta Z, Lewandowska M, Kurzydłowski K J. Mechanical properties and thermal stability of nanostructured ODS RAF steels[J]. Mech. Mater., 2013, 67: 15
doi: 10.1016/j.mechmat.2013.07.006
17 Zilnyk K D, Pradeep K G, Choi P, et al. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study[J]. J. Nucl. Mater., 2017, 492: 142
doi: 10.1016/j.jnucmat.2017.05.027
18 Sandim M J R, Filho I R S, Bredda E H, et al. Short communication on “Coarsening of Y-rich oxide particles in 9%Cr-ODS Eurofer steel annealed at 1350oC”[J]. J. Nucl. Mater., 2017, 484: 283
doi: 10.1016/j.jnucmat.2016.12.025
19 Renzetti R A, Sandim H R Z, Sandim M J R, et al. Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel[J]. Mater. Sci. Eng., 2011, A528: 1442
20 Cunningham N, Wu Y, Klingensmith D, et al. On the remarkable thermal stability of nanostructured ferritic alloys[J]. Mater. Sci. Eng., 2014, A613: 296
21 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy[J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
22 Zinkle S J. Challenges in developing materials for fusion technology—Past, present and future[J]. Fusion Sci. Technol., 2013, 64: 65
doi: 10.13182/FST13-631
23 Wang J Q, Liu S, Xu B, et al. Microstructural stability of a 9Cr oxide dispersion strengthened alloy under thermal aging at high temperatures[J]. J. Alloys Compd., 2023, 932: 167691
doi: 10.1016/j.jallcom.2022.167691
24 Yakel H L. Atom distributions in tau-carbide phases: Fe and Cr distributions in (Cr23 - x Fe x )C6 with x = 0, 0.74, 1.70, 4.13 and 7.36[J]. Acta Crystallogr. Sect., 1987, 43B: 230
25 Becker K, Ebert F. Die kristallstruktur einiger binärer carbide und nitride[J]. Z. Physik, 1925, 31: 268
doi: 10.1007/BF02980580
26 Godec M, Skobir Balantič D A. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures[J]. Sci. Rep., 2016, 6: 29734
doi: 10.1038/srep29734 pmid: 27406340
27 Baltušnikas A, Grybėnas A, Kriūkienė R, et al. Evolution of crystallographic structure of M23C6 carbide under thermal aging of P91 steel[J]. J. Mater. Eng. Perform., 2019, 28: 1480
doi: 10.1007/s11665-019-03935-1
28 Liu X, Miao Y B, Li M M, et al. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations[J]. Scr. Mater., 2018, 148: 33
doi: 10.1016/j.scriptamat.2018.01.018
29 Miller M K, Hoelzer D T, Kenik E A, et al. Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2015, 13: 387
doi: 10.1016/j.intermet.2004.07.036
30 Chen L Z, Li S F, Liao L, et al. Microstructure, tensile properties and thermal stability of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2019, 40(11): 124
30 陈灵芝, 李少夫, 廖 璐 等. 14Cr-ODS钢的显微组织和拉伸性能及热稳定性[J]. 材料热处理学报, 2019, 40(11): 124
31 Zhang Z P, Shi Q Z, Zhao Q, et al. Thermal aging behavior of 14Cr-ODS steel[J]. Trans. Mater. Heat Treat., 2020, 45(6): 153
31 张哲平, 史庆志, 赵 倩 等. 14Cr-ODS钢的热时效行为[J]. 材料热处理学报, 2020, 45(6): 153
32 Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates[J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
33 Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels[J]. Metall. Trans., 1991, 22A: 2225
34 Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957[J]. J. Nucl. Mater., 2004, 329-333: 338
doi: 10.1016/j.jnucmat.2004.04.085
35 Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h mechanical properties and microstructure[J]. Mater. Sci. Eng., 2020, A783: 139292
36 Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
37 Ramar A, Spätig P, Schäublin R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy[J]. J. Nucl. Mater., 2008, 382: 210
doi: 10.1016/j.jnucmat.2008.08.009
38 Primig S, Leitner H, Knabl W, et al. Textural evolution during dynamic recovery and static recrystallization of molybdenum[J]. Metall. Mater. Trans., 2012, 43A: 4794
[1] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[2] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[3] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[4] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[5] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[6] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[7] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[8] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[9] 侯志远, 刘威峰, 徐斌, 孙明月, 时婧, 任少飞. M50轴承钢热变形过程中孔洞形成及演化机制[J]. 金属学报, 2024, 60(1): 57-68.
[10] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[11] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[12] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[13] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[14] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[15] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.