|
|
Ni含量对高强度低合金钢淬透性影响的晶体学认识 |
苏帅1, 韩鹏1,2, 杨善武1, 王华2, 金耀辉2, 尚成嘉1,2( ) |
1 北京科技大学 钢铁共性技术协同创新中心 北京 100083 2 鞍钢集团 海洋装备用金属材料及其应用国家重点实验室 鞍山 114000 |
|
Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel |
SU Shuai1, HAN Peng1,2, YANG Shanwu1, WANG Hua2, JIN Yaohui2, SHANG Chengjia1,2( ) |
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China 2 State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Group Corporation, Anshan 114000, China |
引用本文:
苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
Shuai SU,
Peng HAN,
Shanwu YANG,
Hua WANG,
Yaohui JIN,
Chengjia SHANG.
Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel[J]. Acta Metall Sin, 2024, 60(6): 789-801.
1 |
Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering [J]. Mater. Sci. Eng., 2014, A618: 112
|
2 |
Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel [J]. Int. J. Miner. Metall. Mater., 2021, 28: 816
|
3 |
Capdevila C, García-Mateo C, Chao J, et al. Advanced vanadium alloyed steel for heavy product applications [J]. Mater. Sci. Technol., 2009, 25: 1383
|
4 |
An F C, Zhao S X, Xue X K, et al. Incompleteness of bainite transformation in quenched and tempered steel under continuous cooling conditions [J]. J. Mater. Res. Technol., 2020, 9: 8985
|
5 |
Pan T, Wang X Y, Su H, et al. Effect of alloying element Al on hardenabilitity and mechanical properties of micro-B treated ultra-heavy plate steels [J]. Acta Metall. Sin., 2014, 50: 431
doi: 10.3724/SP.J.1037.2013.00754
|
5 |
潘 涛, 王小勇, 苏 航 等. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响 [J]. 金属学报, 2014, 50: 431
|
6 |
Zhou T, Yu H, Wang S Y. Microstructural characterization and mechanical properties across thickness of ultra-heavy steel plate [J]. Steel Res. Int., 2017, 88: 1700132
|
7 |
Al Hajeri K F, Garcia C I, Hua M J, et al. Particle-stimulated nucleation of ferrite in heavy steel sections [J]. ISIJ Int., 2006, 46: 1233
|
8 |
Wu B B. Study on crystallographic characteristics of high strength low alloy steel and its composition-process-performance relationship [D]. Beijing: University of Science and Technology Beijing, 2020
|
8 |
吴彬彬. 高强度低合金钢晶体学特征及其成分-工艺-性能关系研究 [D]. 北京: 北京科技大学, 2020
|
9 |
Li W, Cao R, Zhu W C, et al. Microstructure evolution and impact toughness variation for high strength steel multi-pass weld metals with various cooling rates [J]. J. Manuf. Processes, 2021, 65: 245
|
10 |
Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, A704: 448
|
11 |
Wang X L, Ma X P, Wang Z Q, et al. Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel [J]. Mater. Charact., 2019, 149: 26
doi: 10.1016/j.matchar.2019.01.005
|
12 |
Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel [J]. Acta Mater., 2004, 52: 5511
|
13 |
Wu B B, Wang Z Q, Wang X L, et al. Relationship between high angle grain boundaries and hardness after γ→α transformation [J]. Mater. Sci. Technol., 2019, 35: 1803
|
14 |
Huang S, Yu Y S, Wang Z Q, et al. Crystallographic insights into the role of nickel on hardenability of wear-resistant steels [J]. Mater. Lett., 2022, 306: 130961
|
15 |
Huang G, Wan X L, Wu K M, et al. Effects of small Ni addition on the microstructure and toughness of coarse-grained heat-affected zone of high-strength low-alloy steel [J]. Metals, 2018, 8: 718
|
16 |
Liu Z P, Yu Y S, Yang J, et al. Morphology and crystallography analyses of HSLA steels with hardenability enhanced by tailored C-Ni collocation [J]. Metals, 2021, 12: 32
|
17 |
Morris Jr J W, Guo Z, Krenn C R, et al. The limits of strength and toughness in steel [J]. ISIJ Int., 2001, 41: 599
|
18 |
Miyamoto G, Hori R, Poorganji B, et al. Crystallographic analysis of proeutectoid ferrite/austenite interface and interphase precipitation of vanadium carbide in medium-carbon steel [J]. Metall. Mater. Trans., 2013, 44A: 3436
|
19 |
Kawata H, Sakamoto K, Moritani T, et al. Crystallography of ausformed upper bainite structure in Fe-9Ni-C alloys [J]. Mater. Sci. Eng., 2006, A438-440: 140
|
20 |
Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
|
21 |
Yu Y S, Wang Z Q, Wu B B, et al. Tailoring variant pairing to enhance impact toughness in high-strength low-alloy steels via trace carbon addition [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 755
|
22 |
Yu Y S, Wang Z Q, Wu B B, et al. New insight into the hardenability of high strength low alloy steel from the perspective of crystallography [J]. Mater. Lett., 2021, 292: 129624
|
23 |
Huang S, Wu B B, Wang Z Q, et al. EBSD study on the significance of carbon content on hardenability [J]. Mater. Lett., 2019, 254: 412
doi: 10.1016/j.matlet.2019.07.106
|
24 |
Furuhara T, Chiba T, Kaneshita T, et al. Crystallography and interphase boundary of martensite and bainite in steels [J]. Metall. Mater. Trans., 2017, 48A: 2739
|
25 |
Miyamoto G, Iwata N, Takayama N, et al. Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming [J]. J. Alloys Compd., 2013, 577 (): S528
|
26 |
Chiba T, Miyamoto G, Furuhara T. Comparison of variant selection between lenticular and lath martensite transformed from deformed austenite [J]. ISIJ Int., 2013, 53: 915
|
27 |
Morris Jr J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
|
28 |
Wu B B, Wang Z Q, Yu Y S, et al. Thermodynamic basis of twin-related variant pair in high strength low alloy steel [J]. Scr. Mater., 2019, 170: 43
|
29 |
Quidort D, Brechet Y J M. A model of isothermal and non isothermal transformation kinetics of bainite in 0.5%C steels [J]. ISIJ Int., 2002, 42: 1010
|
30 |
You Y, Wang X M, Shang C J. Influence of austenitizing temperature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel [J]. Acta Metall. Sin., 2012, 48: 1290
doi: 10.3724/SP.J.1037.2012.00305
|
30 |
由 洋, 王学敏, 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响 [J]. 金属学报, 2012, 48: 1290
|
31 |
Xu Z Y, Li X M. Diffusion of carbon during the formation of low-carbon martensite [J]. Acta Metall. Sin., 1983, 19(2): A83
|
31 |
徐祖耀, 李学敏. 低碳马氏体形成时碳的扩散 [J]. 金属学报, 1983, 19(2): A83
|
32 |
Xu Z Y, Li X M. Diffusion of carbon during formation of low-carbon martensite (Continued) [J]. Acta Metall. Sin., 1983, 19(6): A505
|
32 |
徐祖耀, 李学敏. 低碳马氏体形成时碳的扩散(续) [J]. 金属学报, 1983, 19(6): A505
|
33 |
Aaronson H I, Domian H A, Pound G M. Thermodynamics of the austenite-proeutectoid ferrite transformation: Fe-C alloys [J]. Trans. Metall. Soc. AIME, 1966, 236: 753
|
34 |
Bhadeshia H K D H, Honeycombe R W K. Steels: Microstructure and Properties [M]. 4th Ed., Oxford: Butterworth-Heinemann, 2017: 425
|
35 |
Bhadeshia H K D H. Thermodynamic analysis of isothermal transformation diagrams [J]. Met. Sci., 1982, 16: 159
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|