Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 789-801    DOI: 10.11900/0412.1961.2022.00297
  研究论文 本期目录 | 过刊浏览 |
Ni含量对高强度低合金钢淬透性影响的晶体学认识
苏帅1, 韩鹏1,2, 杨善武1, 王华2, 金耀辉2, 尚成嘉1,2()
1 北京科技大学 钢铁共性技术协同创新中心 北京 100083
2 鞍钢集团 海洋装备用金属材料及其应用国家重点实验室 鞍山 114000
Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel
SU Shuai1, HAN Peng1,2, YANG Shanwu1, WANG Hua2, JIN Yaohui2, SHANG Chengjia1,2()
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Group Corporation, Anshan 114000, China
引用本文:

苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
Shuai SU, Peng HAN, Shanwu YANG, Hua WANG, Yaohui JIN, Chengjia SHANG. Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel[J]. Acta Metall Sin, 2024, 60(6): 789-801.

全文: PDF(2732 KB)   HTML
摘要: 

Ni作为可以同时提高强度和韧性的合金元素被广泛应用于高强度钢的生产中,但是当Ni的质量分数低于5%时,Ni元素的添加对于基体性能的改善不明显。然而对于低碳低合金钢而言,添加Ni会引起淬透性的变化,以及由此带来的协变相变产物的演变是不可忽略的。本工作设计了2种不同Ni含量的高强度低合金钢(0.92Ni钢和2.94Ni钢),通过末端淬火实验和热模拟实验研究了Ni含量对0.92Ni钢和2.94Ni钢淬透性及相变温度的影响,利用SEM和EBSD表征了0.92Ni钢和2.94Ni钢协变相变产物的显微组织和晶体学特征。结果表明,Ni含量的增加可以显著提高2.94Ni钢的淬透性,降低其相变温度。在0.5℃/s的低冷速下,2.94Ni钢的组织为板条贝氏体和少量呈薄膜状弥散分布的马氏体/奥氏体岛(M/A岛),形成以密排面分组(CP分组)为主导的相变模式,大角晶界密度、板条束(block)边界密度和V1/V2变体对含量较高,硬度也较高;而0.92Ni钢的组织为粒状贝氏体和呈粗大块状分布的M/A岛,形成以Bain分组为主导的相变模式,大角晶界密度、block边界密度和变体对含量较低,硬度较低。热力学和动力学分析表明,在0.5℃/s的低冷速下,Ni含量增加显著提高了2.94Ni钢的相变驱动力,转变速率更快;提高了未转变奥氏体中最大C含量的上限,促进了贝氏体的完全转变,减少M/A岛的含量。

关键词 高强度低合金钢淬透性贝氏体变体M/A岛    
Abstract

A matrix structure with high strength, such as lath martensite/bainite is created via quenching to achieve conventional high-strength low-alloy ultra-heavy plates. Subsequently, this structure is tempered to improve its toughness. However, it is usually impossible to avoid the low cooling rate in the center of the ultra-heavy plates during cooling, causing inhomogeneous microstructure and mechanical properties along the normal direction. Therefore, it is necessary to enhance the hardenability of the alloy. At lower cooling rates, granular bainite/ferrites are formed in the center of the plates with low hardenability. While this leads to the incompletely transformed martensite/austenite islands (M/A islands), which often cause cracks, fewer high angle grain boundaries (HAGBs) are also formed, which can effectively impede crack propagation. Therefore, improving the strength, toughness, and hardenability is crucial for the development of high-strength low-alloy steel. The addition of nickel can improve the hardenability as well as the toughness of the heavy plates. In this study, two high-strength low-alloy steels with different nickel contents are designed. In addition, the effect of nickel content on hardenability and phase transition temperature is tested using end quenching and thermal mechanical simulation testing. The effects of nickel content on the microstructure and crystallographic characteristics of coherent phase-transformed products are characterized using SEM and EBSD. The results reveal that the increased nickel content greatly improves the hardenability and significantly reduces the phase transition temperature. At a low cooling rate of 0.5oC/s, the microstructure of 2.94Ni steel is lath bainite, and the M/A islands are dispersed on a thin film, forming a phase transformation mode with higher HAGB density, block boundary density and V1/V2 variant pair content, and high hardness. This mode is dominated by the close-packed plane group. While the microstructure of 0.92Ni steel is granular bainite and the M/A islands are distributed in coarse blocks, forming a phase transformation mode with lower HAGB density, block boundary density and V1/V2 variant pair content, and significantly low hardness. Moreover, this mode is dominated by the Bain group. Additionally, the results demonstrate that at the cooling rate of 0.5oC/s, as nickel content increases, the driving force of phase transformation is greatly improved to obtain a higher transformation rate than the steel with low nickel content. The maximum carbon content of untransformed austenite is higher, which promotes the complete transformation of bainite and produces fewer M/A islands. Therefore, this research possesses great potential for the composition design and process control of high-strength low-alloy steel.

Key wordshigh-strength low-alloy steel    hardenability    bainite    variant pair    martensite/austenite island
收稿日期: 2022-06-15     
ZTFLH:  TG142  
基金资助:辽宁省兴辽英才计划项目(XLYC1907186)
通讯作者: 尚成嘉,cjshang@ustb.edu.cn,主要从事钢铁材料相关研究;
Corresponding author: SHANG Chengjia, professor, Tel: (010)62332428, E-mail: cjshang@ustb.edu.cn
作者简介: 苏 帅,男,1994年生,博士生
SteelCSi + MnNiCr + MoV + TiBSPFe
0.92Ni0.161.400.921.220.1070.00150.00810.0170Bal.
2.94Ni0.161.412.941.190.1050.00140.00820.0171Bal.
表1  2种高强度低合金钢的化学成分
图1  0.92Ni钢和2.94Ni钢的淬透性曲线
图2  0.92Ni钢和2.94Ni钢的连续冷却转变(CCT)曲线
图3  0.92Ni钢和2.94Ni钢在不同冷速下的Vickers硬度与硬度下降率
图4  0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的SEM像和带有晶界的BC图
Steel5° < θ < 15°15° ≤ θ ≤ 45°θ > 45°
0.92Ni0.190.050.48
2.94Ni0.220.091.38
表2  0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的晶界密度
图5  在冷速为0.5℃/s时0.92Ni钢和2.94Ni钢的代表晶粒G1和G2的反极图和极图
图6  0.92Ni钢和2.94Ni钢的代表性晶粒G1和G2通过晶界(GB)图、密排面(CP)分组、Bain分组描绘的微观结构

Variant

Plane parallel

Direction

parallel

Rotation angle/axis from V1

CP

group

Bain

group

Boundary

type

Exact K-S OR0.92Ni steel2.94Ni steel
V1(111) γ //(011) α[ˉ101] γ //[ˉ1ˉ11] α--CP1Bain1-
V2[ˉ101] γ //[ˉ11ˉ1] α60.0°/[11ˉ1]60.360.2Bain 2Block
V3[01ˉ1] γ //[ˉ1ˉ11] α60.0°/[011]59.960.0Bain 3Block
V4[01ˉ1] γ //[ˉ11ˉ1] α10.5°/[0ˉ1ˉ1]5.05.2Bain 1Sub-block
V5[1ˉ10] γ //[ˉ1ˉ11] α60.0°/[0ˉ1ˉ1]59.960.0Bain 2Block
V6[1ˉ10] γ //[ˉ11ˉ1] α49.5°/[011]55.254.9Bain 3Block
V7(1ˉ11) γ //(011) α[10ˉ1] γ //[ˉ1ˉ11] α49.5°/[ˉ1ˉ11]52.351.2CP2Bain 2Packet
V8[10ˉ1] γ //[ˉ11ˉ1] α10.5°/[11ˉ1]8.89.9Bain 1Packet
V9[ˉ1ˉ10] γ //[ˉ1ˉ11] α50.5°/[10313]53.152.4Bain 3Packet
V10[ˉ1ˉ10] γ //[ˉ11ˉ1] α50.5°/[ˉ7ˉ55]52.051.0Bain 2Packet
V11[011] γ //[ˉ1ˉ11] α14.9°/[13 5 1]12.113.1Bain 1Packet
V12[011] γ //[ˉ11ˉ1] α57.2°/[ˉ356]57.957.5Bain 3Packet
V13(ˉ111) γ //(011) α[0ˉ11] γ //[ˉ1ˉ11] α14.9°/[513 1]12.113.1CP3Bain 1Packet
V14[0ˉ11] γ //[ˉ11ˉ1] α50.5°/[ˉ55ˉ7]52.051.0Bain 3Packet
V15[ˉ10ˉ1] γ //[ˉ1ˉ11] α57.2°/[ˉ6ˉ25]57.056.3Bain 2Packet
V16[ˉ10ˉ1] γ //[ˉ11ˉ1] α20.6°/[1111 6]15.016.2Bain 1Packet
V17[110] γ //[ˉ1ˉ11] α51.7°/[11611]51.851.0Bain 3Packet
V18[110] γ //[ˉ11ˉ1] α47.1°/[24 1021]52.451.4Bain 2Packet
V19(11ˉ1) γ //(011) α[ˉ110] γ //[ˉ1ˉ11] α50.5°/[ˉ3 13 10]53.152.4CP4Bain 3Packet
V20[ˉ110] γ //[ˉ11ˉ1] α57.2°/[36ˉ5]57.957.5Bain 2Packet
V21[0ˉ1ˉ1] γ //[ˉ1ˉ11] α20.6°/[30ˉ1]16.718.2Bain 1Packet
V22[0ˉ1ˉ1] γ //[ˉ11ˉ1] α47.1°/[102124]52.451.4Bain 3Packet
V23[101] γ //[ˉ1ˉ11] α57.2°/[ˉ2ˉ5ˉ6]57.056.3Bain 2Packet
V24[101] γ //[ˉ11ˉ1] α21.1°/[9ˉ40]17.118.6Bain 1Packet
表3  基于标准K-S和实际位向关系下V1和其他23个变体的取向差及边界类型
图7  0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的变体对边界密度
SteelBoundary density / μm-1Vickers
BlockSub-blockPacket(θ < 15°)

Packet

(θ > 15°)

hardness

HV

0.92Ni0.340.010.020.12325 ± 11
2.94Ni1.130.020.030.25407 ± 5
表4  0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的板条束、亚板条束、块边界密度和Vickers硬度
图8  0.92Ni钢和2.94Ni钢的相变驱动力(ΔG)与温度的关系
图9  0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的奥氏体转变分数随温度的变化及使用BiDoseResp函数拟合的曲线
图10  0.92Ni钢和2.94Ni钢在冷速为0.5℃/s时的奥氏体转变速率随温度的变化,最快转变速率温度所对应的ΔG
FunctionabTemperature range
ΔGγαNM = a + bT (J·mol-1)-66607900 K > T > 300 K
ΔGγαNM = a + bT (J·mol-1)650-1900 K > T > 620 K
ΔGγαM = a + bT (J·mol-1)00T < 620 K
表5  磁性和非磁性项的自由能近似函数表达式[33]
Alloying elementΔTM / (K·%-1)ΔTNM / (K·%-1)
Si-30
Mn-37.5-39.5
Ni-6-18
Mo-26-17
Cr-19-18
V-44-32
表6  合金元素引起的磁性项温度变化(ΔTM)和非磁性项温度变化(ΔTNM)[34]
图11  0.92Ni钢和2.94Ni钢的T0'曲线及使用BiDoseResp函数拟合的曲线(T0'为考虑贝氏体的400 J/mol储存能下相同化学成分的奥氏体和铁素体具有相同自由能时的温度)
图12  0.92Ni钢和2.94Ni钢未转变奥氏体的最大C含量随奥氏体转变分数的变化
1 Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering [J]. Mater. Sci. Eng., 2014, A618: 112
2 Yu Y S, Hu B, Gao M L, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel [J]. Int. J. Miner. Metall. Mater., 2021, 28: 816
3 Capdevila C, García-Mateo C, Chao J, et al. Advanced vanadium alloyed steel for heavy product applications [J]. Mater. Sci. Technol., 2009, 25: 1383
4 An F C, Zhao S X, Xue X K, et al. Incompleteness of bainite transformation in quenched and tempered steel under continuous cooling conditions [J]. J. Mater. Res. Technol., 2020, 9: 8985
5 Pan T, Wang X Y, Su H, et al. Effect of alloying element Al on hardenabilitity and mechanical properties of micro-B treated ultra-heavy plate steels [J]. Acta Metall. Sin., 2014, 50: 431
doi: 10.3724/SP.J.1037.2013.00754
5 潘 涛, 王小勇, 苏 航 等. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响 [J]. 金属学报, 2014, 50: 431
6 Zhou T, Yu H, Wang S Y. Microstructural characterization and mechanical properties across thickness of ultra-heavy steel plate [J]. Steel Res. Int., 2017, 88: 1700132
7 Al Hajeri K F, Garcia C I, Hua M J, et al. Particle-stimulated nucleation of ferrite in heavy steel sections [J]. ISIJ Int., 2006, 46: 1233
8 Wu B B. Study on crystallographic characteristics of high strength low alloy steel and its composition-process-performance relationship [D]. Beijing: University of Science and Technology Beijing, 2020
8 吴彬彬. 高强度低合金钢晶体学特征及其成分-工艺-性能关系研究 [D]. 北京: 北京科技大学, 2020
9 Li W, Cao R, Zhu W C, et al. Microstructure evolution and impact toughness variation for high strength steel multi-pass weld metals with various cooling rates [J]. J. Manuf. Processes, 2021, 65: 245
10 Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, A704: 448
11 Wang X L, Ma X P, Wang Z Q, et al. Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel [J]. Mater. Charact., 2019, 149: 26
doi: 10.1016/j.matchar.2019.01.005
12 Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel [J]. Acta Mater., 2004, 52: 5511
13 Wu B B, Wang Z Q, Wang X L, et al. Relationship between high angle grain boundaries and hardness after γα transformation [J]. Mater. Sci. Technol., 2019, 35: 1803
14 Huang S, Yu Y S, Wang Z Q, et al. Crystallographic insights into the role of nickel on hardenability of wear-resistant steels [J]. Mater. Lett., 2022, 306: 130961
15 Huang G, Wan X L, Wu K M, et al. Effects of small Ni addition on the microstructure and toughness of coarse-grained heat-affected zone of high-strength low-alloy steel [J]. Metals, 2018, 8: 718
16 Liu Z P, Yu Y S, Yang J, et al. Morphology and crystallography analyses of HSLA steels with hardenability enhanced by tailored C-Ni collocation [J]. Metals, 2021, 12: 32
17 Morris Jr J W, Guo Z, Krenn C R, et al. The limits of strength and toughness in steel [J]. ISIJ Int., 2001, 41: 599
18 Miyamoto G, Hori R, Poorganji B, et al. Crystallographic analysis of proeutectoid ferrite/austenite interface and interphase precipitation of vanadium carbide in medium-carbon steel [J]. Metall. Mater. Trans., 2013, 44A: 3436
19 Kawata H, Sakamoto K, Moritani T, et al. Crystallography of ausformed upper bainite structure in Fe-9Ni-C alloys [J]. Mater. Sci. Eng., 2006, A438-440: 140
20 Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
21 Yu Y S, Wang Z Q, Wu B B, et al. Tailoring variant pairing to enhance impact toughness in high-strength low-alloy steels via trace carbon addition [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 755
22 Yu Y S, Wang Z Q, Wu B B, et al. New insight into the hardenability of high strength low alloy steel from the perspective of crystallography [J]. Mater. Lett., 2021, 292: 129624
23 Huang S, Wu B B, Wang Z Q, et al. EBSD study on the significance of carbon content on hardenability [J]. Mater. Lett., 2019, 254: 412
doi: 10.1016/j.matlet.2019.07.106
24 Furuhara T, Chiba T, Kaneshita T, et al. Crystallography and interphase boundary of martensite and bainite in steels [J]. Metall. Mater. Trans., 2017, 48A: 2739
25 Miyamoto G, Iwata N, Takayama N, et al. Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming [J]. J. Alloys Compd., 2013, 577 (): S528
26 Chiba T, Miyamoto G, Furuhara T. Comparison of variant selection between lenticular and lath martensite transformed from deformed austenite [J]. ISIJ Int., 2013, 53: 915
27 Morris Jr J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
28 Wu B B, Wang Z Q, Yu Y S, et al. Thermodynamic basis of twin-related variant pair in high strength low alloy steel [J]. Scr. Mater., 2019, 170: 43
29 Quidort D, Brechet Y J M. A model of isothermal and non isothermal transformation kinetics of bainite in 0.5%C steels [J]. ISIJ Int., 2002, 42: 1010
30 You Y, Wang X M, Shang C J. Influence of austenitizing temperature on the microstructure and impact toughness of a high strength low alloy HSLA100 steel [J]. Acta Metall. Sin., 2012, 48: 1290
doi: 10.3724/SP.J.1037.2012.00305
30 由 洋, 王学敏, 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响 [J]. 金属学报, 2012, 48: 1290
31 Xu Z Y, Li X M. Diffusion of carbon during the formation of low-carbon martensite [J]. Acta Metall. Sin., 1983, 19(2): A83
31 徐祖耀, 李学敏. 低碳马氏体形成时碳的扩散 [J]. 金属学报, 1983, 19(2): A83
32 Xu Z Y, Li X M. Diffusion of carbon during formation of low-carbon martensite (Continued) [J]. Acta Metall. Sin., 1983, 19(6): A505
32 徐祖耀, 李学敏. 低碳马氏体形成时碳的扩散(续) [J]. 金属学报, 1983, 19(6): A505
33 Aaronson H I, Domian H A, Pound G M. Thermodynamics of the austenite-proeutectoid ferrite transformation: Fe-C alloys [J]. Trans. Metall. Soc. AIME, 1966, 236: 753
34 Bhadeshia H K D H, Honeycombe R W K. Steels: Microstructure and Properties [M]. 4th Ed., Oxford: Butterworth-Heinemann, 2017: 425
35 Bhadeshia H K D H. Thermodynamic analysis of isothermal transformation diagrams [J]. Met. Sci., 1982, 16: 159
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[3] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[4] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[5] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[6] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[7] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[8] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[9] 刘怡, 涂坚, 杨威华, 尹瑞森, 谭力, 黄灿, 周志明. 形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12): 1569-1580.
[10] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[11] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[12] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[13] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[14] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[15] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.