Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 205-214    DOI: 10.11900/0412.1961.2020.00216
  研究论文 本期目录 | 过刊浏览 |
热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响
徐静辉1, 李龙飞1(), 刘心刚2, 李辉2, 冯强1
1.北京科技大学 新金属材料国家重点实验室 北京材料基因工程高精尖创新中心 北京 100083
2.中国科学院金属研究所 沈阳 110016
Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC
XU Jinghui1, LI Longfei1(), LIU Xingang2, LI Hui2, FENG Qiang1
1.Beijing Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
Jinghui XU, Longfei LI, Xingang LIU, Hui LI, Qiang FENG. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. Acta Metall Sin, 2021, 57(2): 205-214.

全文: PDF(3795 KB)   HTML
摘要: 

以一种第四代镍基单晶高温合金为研究对象,采用变截面蠕变试样,在1100℃、43~96 MPa条件下进行200 h蠕变中断实验,利用SEM和TEM观察了微观组织演变规律,利用同步辐射高能XRD和EPMA分析了高温低应力条件下镍基单晶高温合金的蠕变组织演变。结果表明:随着应力的增大,镍基单晶高温合金的γ′相体积分数降低,筏化程度增大且筏排厚度下降,同时,γ相通道宽度逐渐增大,而γ/γ'两相界面位错网间距逐渐减小。固溶强化元素Re、Mo和Cr等在γ相中的富集导致γ/γ'两相错配度绝对值增大。蠕变过程中γ'相体积分数降低和γ'相筏排厚度减小显著降低了合金的强度。另外,位错在γ′相溶解所导致的弯曲相界处的塞积,使位错易于切入γ′相,也是镍基单晶高温合金室温硬度下降的重要原因。

关键词 第四代镍基单晶高温合金高温低应力变截面蠕变组织演变γ′    
Abstract

The mechanism of microstructure evolution and its effect on the mechanical properties of nickel-based single-crystal superalloys during creep at high temperatures and low stresses are critical to the development of advanced single-crystal superalloys for aeroengines with high thrust: weight ratios. In this work, the microstructural evolution of a fourth-generation nickel-based single-crystal superalloy during creep at 1100oC for 200 h at various stress levels was investigated using a specially designed sample with variable cross-sections, with the aim of obtaining different applied stresses synchronously on a single sample. The effects of applied stress on γ/γ' microstructure, interfacial dislocation configuration, alloy element partitioning behavior, and lattice misfit of γ/γ' phases of the used single-crystal superalloy were also studied, as were the effects on room temperature Vickers hardness. The results indicated that the typical rafting microstructure was formed during creep over the 200 h period at 1100oC under various stress levels. With increasing applied stress, the volume fraction and rafted thickness of the γ' phase gradually decreased, while the rafting degree of the γ' phase and the channel width of the γ phase gradually increased. A dense interfacial dislocation network was formed at the γ/γ' interface, and interfacial dislocation spacing decreased with increasing applied stress. Simultaneously, increased partitioning of solution-strengthening elements Re, Mo, and Cr to the γ phase and increased partitioning of γ'-strengthening element Ta to the γ' phase resulted in a larger absolute value of γ/γ' lattice misfit at higher stress. In addition to the decreases in volume fraction and rafted thickness of the γ' phase and the increase in channel width of the γ phase, another important factor in the strength decline of the single-crystal superalloy was the pile-up of dislocations at bent γ/γ' interface boundaries, mainly caused by the dissolution of the γ' phase and promotion of dislocation shear into the γ' phase. This work provides a basis for quickly establishing the relationship between creep conditions and microstructure evolution of nickel-based single-crystal superalloys.

Key wordsforth-generation nickel-based single-crystal superalloy    high temperature and low stress    variable cross-section creep    microstructure evolution    γ' phase
收稿日期: 2020-06-18     
ZTFLH:  TG132.32  
基金资助:国家重点研发计划项目(2016YFB0701403);国家科技重大专项项目(2017-VI-0002-0072)
作者简介: 徐静辉,男,1989年生,博士生
图1  变截面蠕变试样尺寸示意图
图2  镍基单晶高温合金标准热处理后的显微组织
图3  镍基单晶高温合金在1100℃、130 MPa条件下的蠕变曲线(a) creep strain vs time (b) creep strain rate vs time
图4  镍基单晶高温合金在1100℃、130 MPa条件下蠕变断裂试样不同位置纵截面的枝晶干显微组织形貌(a) near the fracture (b) at 4 mm away from the fracture (uniform deformation zone)(c) at the trapezoid zone (d) the rupture specimen and positions for microstructure observations
图5  镍基单晶高温合金在1100℃、不同应力状态下蠕变200 h横截面枝晶干的显微组织(a) 43 MPa (b) 54 MPa (c) 71 MPa (d) 96 MPa
SpecimenVf / %ΩD / nmW / nm
SHT68.0±1.30356±1857±11
VSC 43 MPa, 200 h58.5±1.70.284±0.061518±15442±45
VSC 54 MPa, 200 h57.9±0.80.334±0.048512±26453±25
VSC 71 MPa, 200 h56.7±1.40.518±0.032484±35481±32
VSC 96 MPa, 200 h55.9±1.50.602±0.053458±28488±21
Creep rupture 130 MPa, 231 h49.7±1.10.403±0.037365±46583±33
表1  镍基单晶高温合金在不同热力耦合条件下的显微组织参数定量统计
图6  镍基单晶高温合金在1100℃、不同应力状态下蠕变200 h纵截面枝晶干的显微组织(a) 43 MPa (b) 54 MPa (c) 71 MPa (d) 96 MPa
图7  镍基单晶高温合金在1100℃、不同应力状态下蠕变200 h后的典型界面位错组态及位错网间距
图8  镍基单晶高温合金在1100℃、96 MPa下蠕变200 h后同步辐射XRD谱及分峰结果
Specimenaγaγ'δ
SHT0.35760.3568-0.22
43 MPa0.35830.3573-0.26
54 MPa0.35890.3577-0.33
71 MPa0.35960.3582-0.37
96 MPa0.36080.3589-0.42
表2  镍基单晶高温合金经不同热力耦合条件后的γ/γ'两相晶格常数和错配度
图9  镍基单晶高温合金在1100℃、不同应力状态下蠕变200 h后γ/γ'两相中元素的分配系数
图10  镍基单晶高温合金在1100℃、不同应力状态下蠕变200 h后的室温Vickers硬度
图11  利用γ/γ'两相成分计算及同步辐射实验测得镍基单晶高温合金在1100℃、不同应力状态下蠕变200 h后的γ/γ'两相晶格常数及错配度
1 O'Hara K S, Walston W S, Ross E W, et al. Nickel base superalloy and article [P]. US Pat, US5482789A, 1996
2 Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 15
3 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
3 张 健, 王 莉, 王 栋等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
4 Zhang J, Lou L H. Basic research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637
4 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
5 Wahl J, Harris W. New single crystal superalloys-overview and update [A]. EuroSuperalloys 2014—2nd European Symposium on Superalloys and Their Applications [C]. Courtaboeuf, France: EDP Sciences, 2014: 17002
6 Mottura A M, Reed R C. What is the role of rhenium in single crystal superalloys [A]. EuroSuperalloys 2014—2nd European Symposium on Superalloys and Their Applications [C]. Courtaboeuf, France: EDP Sciences, 2014: 01001
7 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 34
8 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J]. J. Propul. Power, 2006, 22: 361
9 Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals: Effects of misorientation and temperature [J]. Acta Mater., 1999, 47: 1549
10 Reed R C, Matan N, Cox D C, et al. Creep of CMSX-4 superalloy single crystals: Effects of rafting at high temperature [J]. Acta Mater., 1999, 47: 3367
11 Epishin A, Link T. Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses [J]. Philos. Mag., 2004, 84: 1979
12 Wang X G, Liu J L, Jin T, et al. Dislocation motion during high-temperature low-stress creep in Ru-free and Ru-containing single-crystal superalloys [J]. Mater. Des., 2015, 67: 543
13 Chen Y D, Zheng Y R, Feng Q. Evaluating service temperature field of high pressure turbine blades made of directionally solidified DZ125 superalloy based on microstructural evolution [J]. Acta Metall. Sin., 2016, 52: 1545
13 陈亚东, 郑运荣, 冯 强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究 [J]. 金属学报, 2016, 52: 1545
14 Fu C, Chen Y D, He S L, et al. ICME framework for damage assessment and remaining creep life prediction of inservice turbine blades manufactured with Ni-based superalloys [J]. Integr. Mater. Manuf. Innov., 2019, 8: 509
15 Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloys Compd., 2020, 819: 152954
16 Huo J J, Shi Q Y, Tin S, et al. Improvement of creep resistance at 950℃ and 400 MPa in Ru-containing single-crystal superalloys with a high level of Co addition [J]. Metall. Mater. Trans., 2018, 49A: 5298
17 Jácome L A, Nörtershäuser P, Heyer J K, et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys [J]. Acta Mater., 2013, 61: 2926
18 Hantcherli M, Pettinari-Sturmel F, Viguier B, et al. Evolution of interfacial dislocation network during anisothermal high-temperature creep of a nickel-based superalloy [J]. Scr. Mater., 2012, 66: 143
19 Wang X G, Liu J L, Jin T, et al. Effects of temperature and stress on microstructural evolution during creep deformation of Ru-free and Ru-containing single crystal superalloys [J]. Adv. Eng. Mater., 2015, 17: 1034
20 Yue Q Z, Liu L, Yang W C, et al. Stress dependence of dislocation networks in elevated temperature creep of a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2019, A742: 132
21 Fu C, Chen Y D, Li L F, et al. Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks [J]. Mater. Today Commun., 2020, 22: 100838
22 Underwood E E. Quantitative Stereology [M]. Reading, Mass.: Addison-Wesley Publishing Company, 1970: 3
23 Jacques A, Trehorel R, Schenk T. High-temperature dislocation climb in the γ′ rafts of single-crystal superalloys: The hypothesis of a control by dislocation entry into the rafts [J]. Metall. Mater. Trans., 2018, 49A: 4110
24 Henderson P, Berglin L, Jansson C. On rafting in a single crystal nickel-base superalloy after high and low temperature creep [J]. Scr. Mater., 1998, 40: 229
25 Pollock T M, Argon A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta Mater., 1994, 42: 1859
26 Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
27 Shi Q Y. Effects of multiple alloying elements on microstructure and high-temperature low-stress creep behavior in fourth generation Ni-based single crystal superalloys [D]. Beijing: University of Science & Technology Beijing, 2015
27 石倩颖. 多组元作用对第四代镍基单晶高温合金组织和高温低应力蠕变行为的影响 [D]. 北京: 北京科技大学, 2015
28 Mishima Y, Ochiai S, Suzuki T. Lattice parameters of Ni (γ), Ni3Al (γ') and Ni3Ga (γ') solid solutions with additions of transition and B-subgroup elements [J]. Acta Metall., 1985, 33: 1161
29 Tian S G, Zhang B S, Shu D L, et al. Creep properties and deformation mechanism of the containing 4.5Re/3.0Ru single crystal nickel-based superalloy at high temperatures [J]. Mater. Sci. Eng., 2015, A643: 119
30 Kondo Y, Kitazaki N, Namekata J, et al. Effect of morphology of γ' phase on creep resistance of a single crystal nickel-based superalloy, CMSX-4 [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 297
31 Epishin A, Link T, Brückner U, et al. Kinetics of the topological inversion of the γ/γ′-microstructure during creep of a nickel-based superalloy [J]. Acta Mater., 2001, 49: 4017
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[5] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[8] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[9] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[11] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[12] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[13] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[15] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.