|
|
热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响 |
徐静辉1, 李龙飞1( ), 刘心刚2, 李辉2, 冯强1 |
1.北京科技大学 新金属材料国家重点实验室 北京材料基因工程高精尖创新中心 北京 100083 2.中国科学院金属研究所 沈阳 110016 |
|
Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC |
XU Jinghui1, LI Longfei1( ), LIU Xingang2, LI Hui2, FENG Qiang1 |
1.Beijing Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
Jinghui XU,
Longfei LI,
Xingang LIU,
Hui LI,
Qiang FENG.
Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. Acta Metall Sin, 2021, 57(2): 205-214.
1 |
O'Hara K S, Walston W S, Ross E W, et al. Nickel base superalloy and article [P]. US Pat, US5482789A, 1996
|
2 |
Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 15
|
3 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
|
3 |
张 健, 王 莉, 王 栋等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
|
4 |
Zhang J, Lou L H. Basic research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637
|
4 |
张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
|
5 |
Wahl J, Harris W. New single crystal superalloys-overview and update [A]. EuroSuperalloys 2014—2nd European Symposium on Superalloys and Their Applications [C]. Courtaboeuf, France: EDP Sciences, 2014: 17002
|
6 |
Mottura A M, Reed R C. What is the role of rhenium in single crystal superalloys [A]. EuroSuperalloys 2014—2nd European Symposium on Superalloys and Their Applications [C]. Courtaboeuf, France: EDP Sciences, 2014: 01001
|
7 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 34
|
8 |
Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J]. J. Propul. Power, 2006, 22: 361
|
9 |
Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals: Effects of misorientation and temperature [J]. Acta Mater., 1999, 47: 1549
|
10 |
Reed R C, Matan N, Cox D C, et al. Creep of CMSX-4 superalloy single crystals: Effects of rafting at high temperature [J]. Acta Mater., 1999, 47: 3367
|
11 |
Epishin A, Link T. Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses [J]. Philos. Mag., 2004, 84: 1979
|
12 |
Wang X G, Liu J L, Jin T, et al. Dislocation motion during high-temperature low-stress creep in Ru-free and Ru-containing single-crystal superalloys [J]. Mater. Des., 2015, 67: 543
|
13 |
Chen Y D, Zheng Y R, Feng Q. Evaluating service temperature field of high pressure turbine blades made of directionally solidified DZ125 superalloy based on microstructural evolution [J]. Acta Metall. Sin., 2016, 52: 1545
|
13 |
陈亚东, 郑运荣, 冯 强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究 [J]. 金属学报, 2016, 52: 1545
|
14 |
Fu C, Chen Y D, He S L, et al. ICME framework for damage assessment and remaining creep life prediction of inservice turbine blades manufactured with Ni-based superalloys [J]. Integr. Mater. Manuf. Innov., 2019, 8: 509
|
15 |
Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloys Compd., 2020, 819: 152954
|
16 |
Huo J J, Shi Q Y, Tin S, et al. Improvement of creep resistance at 950℃ and 400 MPa in Ru-containing single-crystal superalloys with a high level of Co addition [J]. Metall. Mater. Trans., 2018, 49A: 5298
|
17 |
Jácome L A, Nörtershäuser P, Heyer J K, et al. High-temperature and low-stress creep anisotropy of single-crystal superalloys [J]. Acta Mater., 2013, 61: 2926
|
18 |
Hantcherli M, Pettinari-Sturmel F, Viguier B, et al. Evolution of interfacial dislocation network during anisothermal high-temperature creep of a nickel-based superalloy [J]. Scr. Mater., 2012, 66: 143
|
19 |
Wang X G, Liu J L, Jin T, et al. Effects of temperature and stress on microstructural evolution during creep deformation of Ru-free and Ru-containing single crystal superalloys [J]. Adv. Eng. Mater., 2015, 17: 1034
|
20 |
Yue Q Z, Liu L, Yang W C, et al. Stress dependence of dislocation networks in elevated temperature creep of a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2019, A742: 132
|
21 |
Fu C, Chen Y D, Li L F, et al. Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks [J]. Mater. Today Commun., 2020, 22: 100838
|
22 |
Underwood E E. Quantitative Stereology [M]. Reading, Mass.: Addison-Wesley Publishing Company, 1970: 3
|
23 |
Jacques A, Trehorel R, Schenk T. High-temperature dislocation climb in the γ′ rafts of single-crystal superalloys: The hypothesis of a control by dislocation entry into the rafts [J]. Metall. Mater. Trans., 2018, 49A: 4110
|
24 |
Henderson P, Berglin L, Jansson C. On rafting in a single crystal nickel-base superalloy after high and low temperature creep [J]. Scr. Mater., 1998, 40: 229
|
25 |
Pollock T M, Argon A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta Mater., 1994, 42: 1859
|
26 |
Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
|
27 |
Shi Q Y. Effects of multiple alloying elements on microstructure and high-temperature low-stress creep behavior in fourth generation Ni-based single crystal superalloys [D]. Beijing: University of Science & Technology Beijing, 2015
|
27 |
石倩颖. 多组元作用对第四代镍基单晶高温合金组织和高温低应力蠕变行为的影响 [D]. 北京: 北京科技大学, 2015
|
28 |
Mishima Y, Ochiai S, Suzuki T. Lattice parameters of Ni (γ), Ni3Al (γ') and Ni3Ga (γ') solid solutions with additions of transition and B-subgroup elements [J]. Acta Metall., 1985, 33: 1161
|
29 |
Tian S G, Zhang B S, Shu D L, et al. Creep properties and deformation mechanism of the containing 4.5Re/3.0Ru single crystal nickel-based superalloy at high temperatures [J]. Mater. Sci. Eng., 2015, A643: 119
|
30 |
Kondo Y, Kitazaki N, Namekata J, et al. Effect of morphology of γ' phase on creep resistance of a single crystal nickel-based superalloy, CMSX-4 [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 297
|
31 |
Epishin A, Link T, Brückner U, et al. Kinetics of the topological inversion of the γ/γ′-microstructure during creep of a nickel-based superalloy [J]. Acta Mater., 2001, 49: 4017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|