Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1416-1428    DOI: 10.11900/0412.1961.2021.00336
  综述 本期目录 | 过刊浏览 |
镁基储氢合金动力学调控及电化学性能
朱敏, 欧阳柳章()
华南理工大学 材料科学与工程学院 广东省先进储能材料重点实验室 广州 510641
Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys
ZHU Min, OUYANG Liuzhang()
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
引用本文:

朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
Min ZHU, Liuzhang OUYANG. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. Acta Metall Sin, 2021, 57(11): 1416-1428.

全文: PDF(1956 KB)   HTML
摘要: 

镁基合金储氢密度高且镁资源丰富,是固态储氢的良好工作介质,同时Mg-RE-TM储氢合金作为Ni-MH电池负极在电化学储能领域也有重要的应用。但镁基储氢合金存在吸/放氢温度过高、动力学性能缓慢的缺点,在电化学性能方面则面临循环稳定性差、工作温度区间窄等难题。本文结合近年来国内外的重要研究进展和本研究组的工作,总结了镁基储氢材料吸/放氢动力学调控及高性能Ni-MH电池镁基储氢合金负极的主要研究进展。首先阐述了镁基储氢合金吸/放氢反应主要调控方法及相应的机制;随后介绍了通过氢化反应原位生成多尺度多相复合结构调控吸/放氢动力学的方法,以及基于多尺度多相协同所创制的一系列具有良好宽温区电化学性能的A2B7型RE-Mg-Ni负极合金;最后揭示了Mg-Ni基非晶储氢合金负极材料的电化学性能衰减的新机理,并据此建立的电化学改善其性能的方法。

关键词 镁基储氢合金动力学调控多尺度多相复合RE-Mg-Ni负极合金镁基非晶合金Ni-MH电池    
Abstract

Mg-based alloys are good candidates for solid-state hydrogen storage because of their high hydrogen storage density and abundant resource. Meanwhile, Mg-RE-TM alloys have important applications in electrochemical energy storage as negative electrodes for Ni-MH batteries. However, Mg-based hydrogen storage alloys have some disadvantages, such as high temperature and slow kinetics for hydrogen absorption/desorption, poor cycle stability, and a narrow working temperature as an electrode in a Ni-MH battery. The research progress on Mg-based alloys for hydrogen storage and negative electrode of Ni-MH battery with wide working temperature is summarized in this review, combined with our recent year's research works. First, the main methods and mechanism for tuning the reaction of hydrogen absorption/desorption of Mg-based hydrogen storage alloys are described, followed by an introduction to the progress on tuning kinetics via in-situ formation of a multiscale and multiphase composite structure through hydrogenation. Second, a series of A2B7 types of RE-Mg-Ni alloys with excellent electrochemical performance and a wide working temperature has been developed using multiscale and multiphase synergy for application as a negative electrode of Ni-MH battery. Finally, the newly discovered mechanism of electrochemical performance degradation is described for Mg-Ni based amorphous alloy negative electrode for Ni-MH battery, and methods for selecting new electrolyte and surface protection are proposed for promoting the cyclic stability of Mg-Ni.

Key wordsMg-based hydrogen storage alloy    kinetics tuning    multi-scale and multi-phase composite    RE-Mg-Ni electrode alloy    Mg-Ni amorphous alloy    Ni-MH battery
收稿日期: 2021-08-13     
ZTFLH:  TG139  
基金资助:国家重点研发计划项目(2018YFB1502100);国家创新研究群体科学基金项目(51621001)
作者简介: 朱 敏,男,1962年生,教授,博士
图1  球磨MgH2、完全氢化后的球磨Mg-TiCl3和置换反应Mg-TiCl3样品的TPD曲线,及多价态Ti基催化剂包覆的微米级Mg颗粒储氢材料吸/放氢催化机理示意图[18]
图2  部分放氢的MgH2-Mg2NiH4-CeH2.73纳米复合储氢材料中,MgH2首先在CeH2.73、Ni和MgH2界面处发生分解并形成Mg的TEM明场相、MgH2选区电子衍射花样,及CeH2.73-MgH2-Ni复合材料最大储氢容量与循环次数关系图[43](a) bright field image of the in situ formed CeH2.73-MgH2-Ni composite(b) selected area electron diffraction pattern of MgH2 (zone axis [011ˉ]). Mg nuclei preferentially nucleate along the surface of CeH2.73/CeH2 and Ni phase at the starting transition stage of MgH2 to Mg during the dehydrogenation process(c) evolution of the maximum hydrogen sorption capacities versus cycle times of CeH2.73-MgH2-Ni composite
图3  CeH2.73/CeO2共生结构的HRTEM像,即典型的共生纳米颗粒,壳核结构的纳米颗粒,及壳、核结构的快速Fourier变换(FFT)图像[46](a) HRTEM image of typical symbiotic CeH2.73/CeO2 nanoparticles(b) TEM image of symbiotic CeH2.73/CeO2 nanoparticles with core-shell structure(c-e) HRTEM image showing the magnified area in Fig.3b (c); the insets are the corresponding fast Fourier transformation (FFT) patterns of the outer (d) and inner (e) layers of the core-shell structure (Zoon axis [011])
图4  AB3型合金电极的晶体结构:层间的相互关系及晶体中的间隙[52](a) interrelation of stacking layers(b) some of the interstitial sites
图5  La13.9Sm24.7Mg1.5Ni58Al1.7Zr0.14Ag0.07合金电极在298 K下的高倍率放电(HRD)性能,及1C电流密度下的放电容量衰减情况[68]
图6  不同球磨时间的Mg0.5Ni0.5合金的第一次充/放电曲线和循环性能图[82]
图7  球磨60 h制备的Mg0.50Ni0.50、Mg0.45Ti0.05Ni0.50和Mg0.40Ti0.10Ni0.50合金电极经30 cyc循环后的TG曲线和DSC曲线[88]
1 Zhu M, Lu Y S, Ouyang L Z, et al. Thermodynamic tuning of Mg-based hydrogen storage alloys: A review [J]. Materials (Basel), 2013, 6: 4654
2 Zheng J, Zhou H, Wang C G, et al. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage [J]. Energy Storage Mater., 2021, 35: 695
3 Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.007?
4 Zhang X L, Liu Y F, Zhang X, et al. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis [J]. Mater. Today Nano, 2020, 9: 100064
5 Kadir K, Sakai T, Uehara I. Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35) (Mg1.32Ca0.68) Ni9 of the AB2C9 type structure [J]. J. Alloys Compd., 2000, 302: 112
6 Song M Y, Manaud J P, Darriet B. Dehydriding kinetics of a mechanically alloyed mixture Mg-10wt. %Ni [J]. J. Alloys Compd., 1999, 282: 243
7 Aguey-Zinsou K F, Ares-Fernández J R. Hydrogen in magnesium: New perspectives toward functional stores [J]. Energy Environ. Sci., 2010, 3: 526
8 Chen B H, Chuang Y S, Chen C K. Improving the hydrogenation properties of MgH2 at room temperature by doping with nano-size ZrO2 catalyst [J]. J. Alloys Compd., 2016, 655: 21
9 Ouyang L Z, Tang J J, Zhao Y J, et al. Express penetration of hydrogen on Mg(101¯3) along the close-packed-planes [J]. Sci. Rep., 2015, 5: 10776
10 Luo Q, Li J D, Li B, et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism [J]. J. Magnes. Alloy., 2019, 7: 58
11 Liu Y F, Du H F, Zhang X, et al. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride [J]. Chem. Commun., 2016, 52: 705
12 Zhang X, Leng Z H, Gao M X, et al. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2 [J]. J. Power Sources, 2018, 398: 183
13 Wang K, Zhang X, Liu Y F, et al. Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2 [J]. Chem. Eng. J., 2021, 406: 126831
14 Wang Z Y, Ren Z H, Jian N, et al. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2 [J]. J. Mater. Chem., 2018, 6A: 16177
15 Zhang L T, Xiao X Z, Xu C C, et al. Remarkably improved hydrogen storage performance of MgH2 catalyzed by multivalence NbHx nanoparticles [J]. J. Phys. Chem., 2015, 119C: 8554
16 Wang K, Zhang X, Ren Z H, et al. Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature [J]. Energy Storage Mater., 2019, 23: 79
17 Lin H J, Matsuda J, Li H W, et al. Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides [J]. J. Alloys Compd., 2015, 645: S392
18 Cui J, Wang H, Liu J W, et al. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts [J]. J. Mater. Chem., 2013, 1A: 5603
19 Liu J W, Fu Y Y, Huang W C, et al. Direct microstructural evidence on the catalyzing mechanism for de/hydrogenation of Mg by multi-valence NbOx [J]. J. Phys. Chem., 2020, 124C: 6571
20 Cui J, Liu J W, Wang H, et al. Mg-TM (TM: Ti, Nb, V, Co, Mo, or Ni) core-hell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism [J]. J. Mater. Chem., 2014, 2A: 9645
21 An C H, Liu G, Li L, et al. In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2 [J]. Nanoscale, 2014, 6: 3223
22 Chen J, Xia G L, Guo Z P, et al. Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2 [J]. J. Mater. Chem., 2015, 3A: 15843
23 Wang S, Gao M X, Yao Z H, et al. High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH2 [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.05.004
24 Wang Z Y, Zhang X L, Ren Z H, et al. In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2 [J]. J. Mater. Chem., 2019, 7A: 14244
25 Karst J, Sterl F, Linnenbank H, et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale [J]. Sci. Adv., 2020, 6: eaaz0566
26 Cui J, Ouyang L Z, Wang H, et al. On the hydrogen desorption entropy change of modified MgH2 [J]. J. Alloys Compd., 2018, 737: 427
27 Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films [J]. Appl. Phys. Lett., 2007, 90: 021917
28 Xia G L, Tan Y B, Chen X W, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene [J]. Adv. Mater., 2015, 27: 5981
29 Shinde S S, Kim D H, Yu J Y, et al. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage [J]. Nanoscale, 2017, 9: 7094
30 Haas I, Gedanken A. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry [J]. Chem. Commun., 2008, (15): 1795
31 Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides [J]. Energy Environ. Sci., 2021, 14: 2302
32 Zhu M, Zhu W H, Chung C Y, et al. Microstructure and hydrogen absorption properties of nano-phase composite prepared by mechanical alloying of MmNi5-x(CoAlMn)x and Mg [J]. J. Alloys Compd., 1999, 293-295: 531
33 Zhu M, Wang H, Ouyang L Z, et al. Composite structure and hydrogen storage properties in Mg-base alloys [J]. Int. J. Hydrogen Energy, 2006, 31: 251
34 Ouyang L Z, Wang H, Zhu M, et al. Microstructure of MmM5/Mg multi-layer films prepared by magnetron sputtering [J]. J. Alloys Compd., 2005, 404-406: 485
35 Wang H, Ouyang L Z, Peng C H, et al. MmM5/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering [J]. J. Alloys Compd., 2004, 370: L4
36 Wang H, Ouyang L Z, Zeng M Q, et al. Microstructure and hydrogen sorption properties of Mg–Ni/MmM5 multi-layer film by magne-tron sputtering [J]. Int. J. Hydrogen Energy, 2004, 29: 1389
37 Ouyang L Z, Wang H, Zhu M, et al. Microstructure of MmM5/Mg multi-layer hydrogen storage films prepared by magnetron sputtering [J]. Microsc. Res. Tech., 2004, 64: 323
38 Zhu M, Gao Y, Che X Z, et al. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5-x(CoAlMn)x [J]. J. Alloys Compd., 2002, 330-332: 708
39 Yu X B, Yang Z X, Liu H K, et al. The effect of a Ti-V-based BCC alloy as a catalyst on the hydrogen storage properties of MgH2 [J]. Int. J. Hydrogen Energy, 2010, 35: 6338
40 Fujii H, Orimo S, Ikeda K. Cooperative hydriding properties in a nanostructured Mg2Ni-H system [J]. J. Alloys Compd., 1997, 253-254: 80
41 Zaluska A, Zaluski L, Ström-Olsen J O. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni [J]. J. Alloys Compd., 1999, 289: 197
42 Higuchi K, Yamamoto K, Kajioka H, et al. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films [J]. J. Alloys Compd., 2002, 330-332: 526
43 Ouyang L Z, Yang X S, Zhu M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites [J]. J. Phys. Chem., 2014, 118C: 7808
44 Luo Q, Gu Q F, Liu B, et al. Achieving superior cycling stability by in situ forming NdH2-Mg-Mg2Ni nanocomposites [J]. J. Mater. Chem., 2018, 6A: 23308
45 Lin H J, Ouyang L Z, Wang H, et al. Phase transition and hydrogen storage properties of melt-spun Mg3LaNi0.1 alloy [J]. Int. J. Hydrogen Energy, 2012, 37: 1145
46 Lin H J, Tang J J, Yu Q, et al. Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump [J]. Nano Energy, 2014, 9: 80
47 Wang H, Zhang H L, Luo C, et al. Cooperative catalysis on the dehydrogenation of NdCl3 doped LiBH4-MgH2 composites [J]. Mater. Trans., 2011, 52: 647
48 Luo C, Wang H, Sun T, et al. Enhanced dehydrogenation properties of LiBH4 compositing with hydrogenated magnesium-rare earth compounds [J]. Int. J. Hydrogen Energy, 2012, 37: 13446
49 Sun T, Wang H, Zhang Q G, et al. Synergetic effects of hydrogenated Mg3La and TiCl3 on the dehydrogenation of LiBH4 [J]. J. Mater. Chem., 2011, 21: 9179
50 Zhang Z G, Luo F P, Wang H, et al. Direct synthesis and hydrogen storage characteristics of Mg-B-H compounds [J]. Int. J. Hydrogen Energy, 2012, 37: 926
51 Hong K. The development of hydrogen storage alloys and the progress of nickel hydride batteries [J]. J. Alloys Compd., 2001, 321: 307
52 Ouyang L Z, Huang J L, Wang H, et al. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review [J]. Mater. Chem. Phys., 2017, 200: 164
53 Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 laves-type layers alternating with AB5 layers [J]. J. Alloys Compd., 1997, 257: 115
54 Peng C H, Zhu M. Microstructure and hydrogen storage properties of a multi-phase Ml0.7Mg0.3Ni3.2 hydrogen storage alloy [J]. J. Alloys Compd., 2004, 375: 324
55 Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14 [J]. J. Alloys Compd., 2000, 311: L5
56 Pan H G, Liu Y F, Gao M X, et al. A study of the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x = 2.5-5.0) hydrogen storage alloys [J]. J. Electrochem. Soc., 2003, 150: A565
57 Denys R V, Riabov A B, Yartys V A, et al. Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7-H(D)2 system [J]. J. Solid State Chem., 2008, 181: 812
58 Pan H G, Jin Q W, Gao M X, et al. Effect of the cerium content on the structural and electrochemical properties of the La0.7-xCexMg0.3-Ni2.875Mn0.1Co0.525 (x = 0-0.5) hydrogen storage alloys [J]. J. Alloys Compd., 2004, 373: 237
59 Pan H G, Liu Y F, Gao M X, et al. Structural and electrochemical properties of the La0.7Mg0.3Ni2.975-xCo0.525Mnx hydrogen storage electrode alloys [J]. J. Electrochem. Soc., 2004, 151: A374
60 Jiang L, Li G X, Xu L Q, et al. Effect of substituting Mn for Ni on the hydrogen storage and electrochemical properties of ReNi2.6-x-MnxCo0.9 alloys [J]. Int. J. Hydrogen Energy, 2010, 35: 204
61 Liu Y F, Pan H G, Gao M X, et al. Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4-x-Mn0.1Cox hydride alloys: Ⅱ. Electrochemical properties [J]. J. Alloys Compd., 2004, 376: 304
62 Zhang F L, Luo Y C, Sun K, et al. Effect of Co content on the structure and electrochemical properties of La1.5Mg0.5Ni7-xCox (x = 0, 1.2, 1.8) hydrogen storage alloys [J]. J. Alloys Compd., 2006, 424: 218
63 Wang D H, Luo Y C, Yan R X, et al. Phase structure and electrochemical properties of La0.67Mg0.33Ni3.0-xCox (x = 0.0, 0.25, 0.5, 0.75) hydrogen storage alloys [J]. J. Alloys Compd., 2006, 413: 193
64 Pan H G, Liu Y F, Gao M X, et al. Electrochemical properties of the La0.7Mg0.3Ni2.65-xMn0.1Co0.75Alx (x = 0-0.5) hydrogen storage alloy electrodes [J]. J. Electrochem. Soc., 2005, 152: A326
65 Chu H L, Zhang Y, Qiu S J, et al. Electrochemical performances of cobalt-free La0.7Mg0.3Ni3.5-x(MnAl2)x (x = 0-0.20) hydrogen storage alloy electrodes [J]. J. Alloys Compd., 2008, 457: 90
66 Liu Y F, Cao Y H, Huang L, et al. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries [J]. J. Alloys Compd., 2011, 509: 675
67 Cao Z J, Ouyang L Z, Li L L, et al. Enhanced discharge capacity and cycling properties in high-samarium, praseodymium/neodymium-free, and low-cobalt A2B7 electrode materials for nickel-metal hydride battery [J]. Int. J. Hydrogen Energy, 2015, 40: 451
68 Ouyang L Z, Yang T H, Zhu M, et al. Hydrogen storage and electrochemical properties of Pr, Nd and Co-free La13.9Sm24.7Mg1.5Ni58-Al1.7Zr0.14Ag0.07 alloy as a nickel-metal hydride battery electrode [J]. J. Alloys Compd., 2018, 735: 98
69 Liu Y F, Pan H G, Gao M X, et al. The electrochemical performance of a La-Mg-Ni-Co-Mn metal hydride electrode alloy in the temperature range of -20 to 30℃ [J]. Electrochim. Acta, 2004, 49: 545
70 Young K, Koch J, Yasuoka S, et al. Mn in misch-metal based superlattice metal hydride alloy-Part 2 Ni/MH battery performance and failure mechanism [J]. J. Power Sources, 2015, 277: 433
71 Ni C Y, Zhou H Y, Shi N L, et al. Electrochemical performances of Mm0.7MgxNi2.58Co0.5Mn0.3Al0.12 (x = 0, 0.3) hydrogen storage alloys in the temperature range from 238 to 303 K [J]. Electrochim. Acta, 2012, 59: 237
72 Shen X Q, Chen Y G, Tao M D, et al. The structure and 233 K electrochemical properties of La0.8-xNdxMg0.2Ni3.1Co0.25Al0.15 (x = 0.0-0.4) hydrogen storage alloys [J]. Int. J. Hydrogen Energy, 2009, 34: 2661
73 Lei Y Q, Wu Y M, Yang Q M, et al. Electrochemical behaviour of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys [J]. Z. Phys. Chem., 1994, 183: 379
74 Notten P H L, Ouwerkerk M, van Hal H, et al. High energy density strategies: From hydride-forming materials research to battery integration [J]. J. Power Sources, 2004, 129: 45
75 Orimo S, Ikeda K, Fujii H, et al. Structural and hydriding properties of the Mg-Ni-H system with nano- and/or amorphous structures [J]. Acta Mater., 1997, 45: 2271
76 Iwakura C, Nohara S, Zhang S G, et al. Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite [J]. J. Alloys Compd., 1999, 285: 246
77 Zhang Y, Lei Y Q, Chen L X, et al. The effect of partial substitution of Zr for Ti on the electrochemical properties and surface passivation film of Mg35Ti10-xZrxNi55 (x = 1, 3, 5, 7, 9) electrode alloys [J]. J. Alloys Compd, 2002, 337: 296
78 Liu W H, Lei Y Q, Sun D L, et al. A study of the degradation of the electrochemical capacity of amorphous Mg50Ni50 alloy [J]. J. Power Sources, 1996, 58: 243
79 Zhang Y, Liao B, Chen L X, et al. The effect of Ni content on the electrochemical and surface characteristics of Mg90-xTi10Nix (x = 50, 55, 60) ternary hydrogen storage electrode alloys [J]. J. Alloys Compd, 2001, 327: 195
80 Mu D, Hatano Y, Abe T, et al. Degradation kinetics of discharge capacity for amorphous Mg-Ni electrode [J]. J. Alloys Compd., 2002, 334: 232
81 Lee H Y, Goo N H, Jeong W T, et al. The surface state of nanocrystalline and amorphous Mg2Ni alloys prepared by mechanical alloying [J]. J. Alloys Compd., 2000, 313: 258
82 Huang J L, Ouyang L Z, Wang H, et al. Hydrogenation and crystallization of amorphous phase: A new mechanism for the electrochemical capacity and its decay in milled Mg-Ni alloys [J]. Electrochim. Acta, 2019, 305: 145
83 Liu W H, Lei Y Q, Wu J, et al. The capacity deterioration model of mechanically alloyed MgxNi100-x amorphous electrodes in charging-discharging cycling [J]. Int. J. Hydrogen Energy, 1997, 22: 999
84 Nohara S, Hamasaki K, Zhang S G, et al. Electrochemical characteristics of an amorphous Mg0.9V0.1Ni alloy prepared by mechanical alloying [J]. J. Alloys Compd., 1998, 280: 104
85 Ye H, Lei Y Q, Chen L S, et al. Electrochemical characteristics of amorphous Mg0.9M0.1Ni (M = Ni, Ti, Zr, Co and Si) ternary alloys prepared by mechanical alloying [J]. J. Alloys Compd., 2000, 311: 194
86 Anik M, Özdemir G, Küçükdeveci N, et al. Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy [J]. Int. J. Hydrogen Energy, 2011, 36: 1568
87 Han S C, Lee P S, Lee J Y, et al. Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling [J]. J. Alloys Compd., 2000, 306: 219
88 Huang J L, Wang H, Ouyang L Z, et al. Reducing the electrochemical capacity decay of milled Mg-Ni alloys: The role of stabilizing amorphous phase by Ti-substitution [J]. J. Power Sources, 2019, 438: 226984
89 Li P, Wang H, Jiang W, et al. Promoting the cycling stability of amorphous MgNi-based alloy electrodes by mitigating hydrogen-induced crystallization [J]. Int. J. Hydrogen Energy, 2021, 46: 6701
90 Kim J S, Lee C R, Choi J W, et al. Effects of F-treatment on degradation of Mg2Ni electrode fabricated by mechanical alloying [J]. J. Power Sources, 2002, 104: 201
91 Yan S L, Nei J, Li P F, et al. Effects of Cs2CO3 additive in KOH electrolyte used in Ni/MH batteries [J]. Batteries, 2017, 3: 41
92 Yan S L, Young K H, Ng K Y. Effects of salt additives to the KOH electrolyte used in Ni/MH batteries [J]. Batteries, 2015, 1: 54
93 Shangguan E B, Li J, Chang Z R, et al. Sodium tungstate as electrolyte additive to improve high-temperature performance of nickel-metal hydride batteries [J]. Int. J. Hydrogen Energy, 2013, 38: 5133
94 Mohamad A A, Mohamed N S, Alias Y, et al. Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries [J]. J. Alloys Compd., 2002, 337: 208
95 Huang J L, Liao C W, Wang H, et al. Exploring new electrolyte to inhibit corrosion of Mg-based amorphous alloy anodes: A route for promotion energy density of Ni-MH battery [J]. J. Power Source, under review
[1] 王仲民; 彭成红; 欧阳柳章; 李祖鑫; 朱敏 . 纳米化对Mg2Ni/MmNi5-x(CoAlMn)x复合储氢合金电极特性的影响[J]. 金属学报, 2002, 38(2): 189-192 .