Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1221-1229    DOI: 10.11900/0412.1961.2023.00173
  研究论文 本期目录 | 过刊浏览 |
两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为
赵鹏1,2, 谢光3, 段慧超1, 张健3, 杜奎1()
1中国科学院金属研究所 沈阳材料国家研究中心 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
3中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys
ZHAO Peng1,2, XIE Guang3, DUAN Huichao1, ZHANG Jian3, DU Kui1()
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
Peng ZHAO, Guang XIE, Huichao DUAN, Jian ZHANG, Kui DU. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1221-1229.

全文: PDF(2953 KB)   HTML
摘要: 

通过SEM和TEM等手段研究了经热机械疲劳变形后的第三代和第四代单晶高温合金的显微组织,了解高温合金在近服役条件下的变形组织,分析单晶高温合金近服役条件下的变形机制。结果表明,第三代和第四代单晶高温合金样品中在不同{111}面上产生了大量的变形孪晶,且在平行的孪晶片层中或者孪晶片层交截周围发现大量再结晶晶粒。再结晶晶粒的界面主要由变形后的孪晶界、小角度晶界以及孪晶相交产生的大角度晶界组成。借助像差校正透射电镜解析了变形后的孪晶界结构以及孪晶诱发动态再结晶的过程,揭示了单晶高温合金热机械疲劳断裂机制。

关键词 镍基单晶高温合金热机械疲劳像差校正透射电镜孪晶再结晶    
Abstract

Ni-based single crystal superalloys are widely used for turbine engine blades because of their excellent high-temperature mechanical properties. Thermo-mechanical fatigue (TMF) is a complex deformation process that combines strain and temperature effects. This process is also considered as a deformation method related to the working conditions of aviation turbine blades. Therefore, understanding the deformation mechanism of materials undergoing TMF is important for extending the service life of aviation turbine blades. Here, third-generation and fourth-generation single crystal superalloys that experienced TMF deformation are investigated by SEM and TEM, including aberration-corrected STEM. The results show the formation of deformation twins on different {111} planes of the single crystal superalloys. In addition, a large number of recrystallized grains are found in parallel twin lamellae or around the intersection of twin lamellae. The grain boundary of recrystallized grains is primarily composed of twin boundaries, low-angle grain boundaries, and large-angle grain boundaries generated by twin intersections. Furthermore, the twinning boundaries after deformation are analyzed using aberration-corrected TEM. Consequently, the process of twinning-induced dynamic recrystallization is comprehensively understood, which improved the TMF fracture mechanism of single crystal high-temperature alloys. These results improve the understanding of the deformation mechanism of single crystal superalloys under service conditions.

Key wordsNi-based single crystal superalloy    thermo-mechanical fatigue (TMF)    aberration-corrected transmission electron microscope    twin    recrystallization
收稿日期: 2023-04-18     
ZTFLH:  TG111.8  
基金资助:国家自然科学基金项目(91960202);国家自然科学基金项目(52171020);国家自然科学基金项目(51901229);国家自然科学基金项目(51911530154);国家自然科学基金项目(91860201);国家自然科学基金项目(52271042);国家科技重大专项项目(P2022-C-IV-001-001)
作者简介: 赵 鹏,男,1995年生,博士生
AlloyCoCrMoWAlTaReRuNi
Third-gen.93.51.566.5940Bal.
Fourth-gen.93.51.566.5943Bal.
表1  第三代和第四代镍基单晶高温合金的名义化学成分 (mass fraction / %)
图1  断口形貌、变形样品的孪晶片层及断裂样品断口区域微观结构(第三代单晶高温合金)
图2  孪晶片层区域的Kikuchi衬度图、Euler角图、晶界图、基体与孪晶的取向差及孪晶片层区域的取向角分布(第三代单晶高温合金)
图3  沿[11¯0]轴观察的变形样品中孪晶A和孪晶B的微观结构(第三代单晶高温合金)
图4  孪晶片层间以及孪晶交截发生再结晶沿[11¯0]轴的显微组织
图5  第三代和第四代高温合金孪晶片层附近沿[11¯0]轴的STEM像
图6  第三代单晶高温合金断口表面SEM像及高倍SEM-BSE像
图7  热机械疲劳断裂机制图(第三代和第四代单晶高温合金)
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. New York: Cambridge University Press, 2008: 1
2 Moverare J J, Johansson S, Reed R C. Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal superalloy [J]. Acta Mater., 2009, 57: 2266
doi: 10.1016/j.actamat.2009.01.027
3 Marchionni M, Goldschmidt D, Maldini M. Evaluation of high-temperature behavior of CMSX4 + yttrium single-crystal nickel-base superalloy [J]. J. Mater. Eng. Perform., 1993, 2: 497
doi: 10.1007/BF02661732
4 Zrnik J, Wang J A, Yu Y, et al. Influence of cycling frequency on cyclic creep characteristics of nickel base single-crystal superalloy [J]. Mater. Sci. Eng., 1997, A234-236: 884
5 MacLachlan D W, Knowles D M. Fatigue behaviour and lifing of two single crystal superalloys [J]. Fatigue Fract. Eng. Mater. Struct., 2001, 24: 503
doi: 10.1046/j.1460-2695.2001.00392.x
6 Yu J J, Han G M, Chu Z K, et al. High temperature thermo-mechanical and low cycle fatigue behaviors of DD32 single crystal superalloy [J]. Mater. Sci. Eng., 2014, A592: 164
7 Fu B D, Zhang J X, Harada H. Interaction between crack and twins in TMS-82 superalloy during thermomechanical fatigue process [J]. Prog. Nat. Sci.: Mater. Int., 2013, 23: 508
doi: 10.1016/j.pnsc.2013.09.005
8 Hong H U, Yoon J G, Choi B B, et al. Localized microtwin formation and failure during out-of-phase thermomechanical fatigue of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2014, 69: 22
doi: 10.1016/j.ijfatigue.2013.01.015
9 Kanesund J, Moverare J, Johansson S. The deformation and damage mechanisms during thermomechanical fatigue (TMF) in IN792 [J]. Procedia Eng., 2011, 10: 189
doi: 10.1016/j.proeng.2011.04.034
10 Kanesund J, Moverare J J, Johansson S. Deformation and damage mechanisms in IN792 during thermomechanical fatigue [J]. Mater. Sci. Eng., 2011, A528: 4658
11 Moverare J J, Segersäll M, Sato A, et al. Thermomechanical fatigue of single-crystal superalloys: Influence of composition and microstructure [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012:369
12 Zhang J X, Harada H, Ro Y, et al. Thermomechanical fatigue mechanism in a modern single crystal nickel base superalloy TMS-82 [J]. Acta Mater., 2008, 56: 2975
doi: 10.1016/j.actamat.2008.02.035
13 Zhang J X, Harada H, Koizumi Y, et al. Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure [J]. Scr. Mater., 2009, 61: 1105
doi: 10.1016/j.scriptamat.2009.08.036
14 Sun F, Zhang J X, Harada H. Deformation twinning and twinning-related fracture in nickel-base single-crystal superalloys during thermomechanical fatigue cycling [J]. Acta Mater., 2014, 67: 45
doi: 10.1016/j.actamat.2013.12.011
15 Zhang J X, Ro Y, Zhou H, et al. Deformation twins and failure due to thermo-mechanical cycling in TMS-75 superalloy [J]. Scr. Mater., 2006, 54: 655
doi: 10.1016/j.scriptamat.2005.10.030
16 Hong H U, Kang J G, Choi B G, et al. A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2011, 33: 1592
doi: 10.1016/j.ijfatigue.2011.07.009
17 Wardle S, Phan I, Hug G. Analysis of twin intersections in TiAl [J]. Philos. Mag., 1993, 67A: 497
18 Zhang L C, Chen G L, Ye H Q. Substructures of deformation twins and twin intersections in a Ti-45Al-8Nb-2.5 Mn alloy heavily deformed at room temperature [J]. Mater. Sci. Eng., 2001, A299: 267
19 Yang G, Ma S Y, Du K, et al. Interactions between dislocations and twins in deformed titanium aluminide crystals [J]. J. Mater. Sci. Technol., 2019, 35: 402
doi: 10.1016/j.jmst.2018.09.031
20 Zhang L C, Chen G L, Wang J G, et al. Formation of a triangular striated structure in the twin intersection area in γ-TiAl during room-temperature deformation [J]. Intermetallics, 1999, 7: 1241
doi: 10.1016/S0966-9795(99)00027-8
21 Ni S, Wang Y B, Liao X Z, et al. The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials [J]. Acta Mater., 2012, 60: 3181
doi: 10.1016/j.actamat.2012.02.026
22 Zhu Y T, Wu X L, Liao X Z, et al. Dislocation-twin interactions in nanocrystalline fcc metals [J]. Acta Mater., 2011, 59: 812
doi: 10.1016/j.actamat.2010.10.028
23 Lv X Z, Zhang J X, Harada H. Twin-dislocation and twin-twin interactions during cyclic deformation of a nickel-base single crystal TMS-82 superalloy [J]. Int. J. Fatigue, 2014, 66: 246
doi: 10.1016/j.ijfatigue.2014.04.012
24 Kontis P, Li Z M, Collins D M, et al. The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys [J]. Scr. Mater., 2018, 145: 76
doi: 10.1016/j.scriptamat.2017.10.005
25 Wu X X, Makineni S K, Kontis P, et al. On the segregation of Re at dislocations in the γ' phase of Ni-based single crystal superalloys [J]. Materialia, 2018, 4: 109
doi: 10.1016/j.mtla.2018.09.018
26 Smith T M, Rao Y, Wang Y, et al. Diffusion processes during creep at intermediate temperatures in a Ni-based superalloy [J]. Acta Mater., 2017, 141: 261
doi: 10.1016/j.actamat.2017.09.027
27 Barba D, Pedrazzini S, Vilalta-clemente A, et al. On the composition of microtwins in a single crystal nickel-based superalloy [J]. Scr. Mater., 2017, 127: 37
doi: 10.1016/j.scriptamat.2016.08.029
28 Meid C, Eggeler M, Watermeyer P, et al. Stress-induced formation of TCP phases during high temperature low cycle fatigue loading of the single-crystal Ni-base superalloy ERBO/1 [J]. Acta Mater., 2019, 168: 343
doi: 10.1016/j.actamat.2019.02.022
29 He J Y, Zenk C H, Zhou X Y, et al. On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy [J]. Acta Mater., 2020, 184: 86
doi: 10.1016/j.actamat.2019.11.035
30 Paul U, Sahm P R, Goldschmidt D. Inhomogeneities in single-crystal components [J]. Mater. Sci. Eng., 1993, A173: 49
31 Cox D C, Roebuck B, Rae C M F, et al. Recrystallisation of single crystal superalloy CMSX-4 [J]. Mater. Sci. Technol., 2003, 19: 440
doi: 10.1179/026708303225010731
32 Jo C Y, Cho H Y, Kim H M. Effect of recrystallisation on microstructural evolution and mechanical properties of single crystal nickel base superalloy CMSX-2 Part 1—Microstructural evolution during recrystallisation of single crystal [J]. Mat. Sci. Technol., 2003, 19: 1665
doi: 10.1179/026708303225008301
33 Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J]. Mater. Sci. Eng., 2005, A392: 320
34 Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy [J]. Mater. Sci. Eng., 2002, A337: 121
35 Chao H Y, Sun H F, Chen W Z, et al. Static recrystallization kinetics of a heavily cold drawn AZ31 magnesium alloy under annealing treatment [J]. Mater. Charact., 2011, 62: 312
doi: 10.1016/j.matchar.2011.01.007
36 Li Y P, Wu S, Bian H K, et al. Grain refinement due to complex twin formation in rapid hot forging of magnesium alloy [J]. Scr. Mater., 2013, 68: 171
doi: 10.1016/j.scriptamat.2012.10.007
37 Cao Y, Wang Y B, An X H, et al. Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins [J]. Scr. Mater., 2015, 100: 98
doi: 10.1016/j.scriptamat.2015.01.001
38 Zhao P, Xie G, Chen C J, et al. Interplay of chemistry and deformation-induced defects on facilitating topologically-close-packed phase precipitation in nickel-base superalloys [J]. Acta Mater., 2022, 236: 118109
doi: 10.1016/j.actamat.2022.118109
39 Voronova L M, Degtyarev M V, Chashchukhina T I. Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening [J]. Phys. Met. Metallogr., 2007, 104: 262
40 Zhang B, Lu X, Liu D L, et al. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy [J]. Mater. Sci. Eng., 2012, A551: 149
41 Fang H C, Chao H, Chen K H. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy [J]. J. Alloys Compd., 2015, 622: 166
doi: 10.1016/j.jallcom.2014.10.044
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[7] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[8] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[9] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[15] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.