Instream sensor results suggest soil–plant processes produce three distinct seasonal patterns of nitrate concentrations in the Ohio River Basin

Author:

Gerlitz Morgan1,Fox Jimmy1,Ford William2ORCID,Husic Admin3,Mahoney Tyler4,Armstead Mindy5,Hendricks Susan6,Crain Angela7,Backus Jason8,Pollock Erik9,Ren Wei10,Tao Bo10,Riddle Brenden1,White David6

Affiliation:

1. Department of Civil Engineering University of Kentucky Lexington Kentucky USA

2. Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA

3. Civil, Environmental and Architectural Engineering University of Kansas Lawrence Kansas USA

4. Civil and Environmental Engineering University of Louisville Louisville Kentucky USA

5. Natural Resources Department Marshall University Huntington West Virginia USA

6. Hancock Biological Station Murray State University Murray Kentucky USA

7. Ohio‐Kentucky‐Indiana Water Science Center United States Geological Survey Louisville Kentucky USA

8. Kentucky Geological Survey University of Kentucky Lexington Kentucky USA

9. Stable Isotopes Laboratory University of Arkansas Fayetteville Arkansas USA

10. Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA

Abstract

AbstractThe Ohio River Basin (ORB) is responsible for 35% of total nitrate loading to the Gulf of Mexico yet controls on nitrate timing require investigation. We used a set of submersible ultraviolet nitrate analyzers located at 13 stations across the ORB to examine nitrate loading and seasonality. Observed nitrate concentrations ranged from 0.3 to 2.8 mg L−1 N in the Ohio River's mainstem. The Ohio River experiences a greater than fivefold increase in annual nitrate load from the upper basin to the river's junction with the Mississippi River (74–415 Gg year−1). The nitrate load increase corresponds with the greater drainage area, a 50% increase in average annual nitrate concentration, and a shift in land cover across the drainage area from 5% cropland in the upper basin to 19% cropland at the Ohio River's junction with the Mississippi River. Time‐series decomposition of nitrate concentration and nitrate load showed peaks centered in January and June for 85% of subbasin‐year combinations and nitrate lows in summer and fall. Seasonal patterns of the terrestrial system, including winter dormancy, spring planting, and summer and fall growing‐harvest seasons, are suggested to control nitrate timing in the Ohio River as opposed to controls by river discharge and internal cycling. The dormant season from December to March carries 51% of the ORB's nitrate load, and nitrate delivery is high across all subbasins analyzed, regardless of land cover. This season is characterized by soil nitrate leaching likely from mineralization of soil organic matter and release of legacy nitrogen. Nitrate experiences fast transit to the river owing to the ORB's mature karst geology in the south and tile drainage in the northwest. The planting season from April to June carries 26% of the ORB's nitrate and is a period of fertilizer delivery from upland corn and soybean agriculture to streams. The harvest season from July to November carries 22% of the ORB's nitrate and is a time of nitrate retention on the landscape. We discuss nutrient management in the ORB including fertilizer efficiency, cover crops, and nitrate retention using constructed measures.

Funder

National Science Foundation

Publisher

Wiley

Subject

Earth-Surface Processes,Water Science and Technology,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3