Effect of retort processing, containers and motion types on digestibility of black beans (Phaseolus vulgaris L.) starch

Author:

Punia Bangar Sneh1ORCID,Whiteside Scott1ORCID

Affiliation:

1. Department of Food, Nutrition and Packaging Sciences Clemson University Clemson South Carolina USA

Abstract

SummaryWith the growing demand for convenient and shelf‐stable canned beans, understanding the changes in starch digestibility due to retort processing is crucial for optimising nutritional quality and enhancing consumer health. The present study investigated the impact of retort processing, specifically container type and agitation, on the digestibility of black bean starch. Retort pouches exhibited a more rapid heat transfer rate to the enclosed product than cans, which reduced the overall processing duration. Also, the processing time to achieve a Fo = 6 of Clostridium botulinum was almost 2.5 min (pouches) and 3.2 min (cans) faster for the oscillating than the static mode. The in vitro digestibility data revealed that the retort processing of black beans led to an increase in rapidly digestible starch (RDS) from 10.51% to 32.11%. However, slowly digestible starch (SDS) decreased from 15.67% to 7.89%, and resistant starch (RS) decreased from 47.91% to 11.86%, regardless of the container type and motion involved. Processing enhanced starch digestibility in all the combinations of container and motions; nevertheless, black beans in pouches with oscillatory motion still contain a relatively significant amount of SDS and RS than the other combinations. These findings have important implications for the food industry in optimising processing techniques and packaging strategies to preserve the nutritional value of black beans. The findings of this study can have practical implications for food producers engaged in the retort processing of foods contained in pouches and cans. The investigation will provide insights into how the process of retort sterilisation affects digestibility, including slowly digestible starch and resistant starch of different types of starch.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3