Affiliation:
1. Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
2. Department of Biology Colorado State University Fort Collins Colorado USA
3. W.K. Kellogg Biological Station, Department of Integrative Biology, Ecology, Evolution and Behavior Program Michigan State University Hickory Corners Michigan USA
4. U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center Corvallis Oregon USA
5. Department of Biology, Centre for Biodiversity Dynamics (CBD) Norwegian University of Science and Technology (NTNU) Trondheim Norway
Abstract
Abstract1. Critical thermal limits represent an important component of an organism's capacity to cope with future temperature changes. Understanding the drivers of variation in these traits may uncover patterns in physiological vulnerability to climate change. Local temperature extremes have emerged as a major driver of thermal limits, although their effects can be mediated by the exploitation of fine‐scale spatial variation in temperature through behavioural thermoregulation.2. Here, we investigated thermal limits along elevation gradients within and between two cold‐water frog species (Ascaphus spp.), one with a coastal distribution (A. truei) and the other with a continental range (A. montanus). We quantified thermal limits for over 700 tadpoles, representing multiple populations from each species. We combined local temporal and fine‐scale spatial temperature data to quantify local thermal landscapes (i.e., thermalscapes), including the opportunity for behavioural thermoregulation.3. Lower thermal limits for either species could not be reached experimentally without the water freezing, suggesting that cold tolerance is <0.3°C. By contrast, upper thermal limits varied among populations, but this variation only reflected local temperature extremes in A. montanus, perhaps as a consequence of the greater variation in stream temperatures across its range. Lastly, we found minimal fine‐scale spatial variability in temperature, suggesting limited opportunity for behavioural thermoregulation and thus increased vulnerability to warming for all populations.4. By quantifying local thermalscapes, we uncovered different trends in the relative vulnerability of populations across elevation for each species. In A. truei, physiological vulnerability decreased with elevation, whereas in A. montanus, all populations were equally physiologically vulnerable. These results highlight how similar environments can differentially shape physiological tolerance and patterns of vulnerability of species, and in turn impact their vulnerability to future warming.
Funder
National Science Foundation
Natural Sciences and Engineering Research Council of Canada
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献