Flight capabilities of invasive yellowjacket Vespula germanica drones: the effect of kinship and nutrition

Author:

Porrino Agustina P.1ORCID,Martínez Andrés S.1ORCID,Villacide José M.1ORCID,Masciocchi Maité1ORCID

Affiliation:

1. Grupo de Ecología de Poblaciones de Insectos Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (CONICET – INTA) Bariloche Río Negro Argentina

Abstract

AbstractDispersal is a multifactorial process which may influence, among several others, population dynamics, inbreeding likelihood, and mate competition. For species that disperse by flight, many studies have suggested that life‐history traits, such as body size or nutritional condition, could promote variation in flight capabilities and, consequently, on dispersal behavior. Eusocial hymenopterans are likely to experience high densities of related reproductive individuals near their nests, thus increasing probabilities of inbred matings and kin competition. Spatial segregation resulting from differences in flight capabilities of Vespula germanica (Fabricius) (Hymenoptera: Vespidae) nestmate drones could reduce interactions with kin, thus decrease inbreeding and kin competition. Our aim was to characterize, in the laboratory, flight capabilities of sibling drones and elucidate traits that could affect it, focusing on the relevance of carbohydrate intake (diets with different sugar concentration) during early adulthood. Our results indicate that in tethered flight mill assays, V. germanica drones have highly variable flight capabilities within and between nests, with most drones likely to remain relatively close to their nest of origin. The observed flight capabilities are affected by nutrition, with those individuals better nurtured (i.e., with higher nutritional index), flying farther distances. Additionally, diets with variable carbohydrate concentration provided during early adulthood did not affect flight capabilities (only those exposed to a carbohydrate‐free diet had reduced flight distances and speeds), suggesting that nutrition during larval stages is determinant for flight. Our findings contribute to the understanding of the mechanisms underlying V. germanica drone dispersal behavior which, in turn, might influence inbreeding likelihood in the species.

Funder

Fondo para la Investigación Científica y Tecnológica

Instituto Nacional de Tecnología Agropecuaria

Publisher

Wiley

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3