GRDATFusion: A gradient residual dense and attention transformer infrared and visible image fusion network for smart city security systems in cloud and fog computing

Author:

Zheng Jian1ORCID,Jeon Seunggil2,Yang Xiaomin1

Affiliation:

1. College of Electronics and Information Engineering Sichuan University Chengdu China

2. Samsung Electronics 129 Samseong‐ro Yeongtong‐gu Suwon‐si Gyeonggi‐do South Korea

Abstract

AbstractThe infrared and visible fusion technology holds a pivotal position in smart city for cloud and fog computing, particularly in security system. By fusing infrared and visible image information, this technology enhances target identification, tracking and monitoring precision, bolstering overall system security. However, existing deep learning‐based methods rely heavily on convolutional operations, which excel at extracting local features but have limited receptive fields, hampering global information capture. To overcome this difficulty, we introduce GRDATFusion, a novel end‐to‐end network comprising three key modules: transformer, gradient residual dense and attention residual. The gradient residual dense module extracts local complementary features, leveraging a dense‐shaped network to retain potentially lost information. The attention residual module focuses on crucial input image details, while the transformer module captures global information and models long‐range dependencies. Experiments on public datasets show that GRDATFusion outperforms state‐of‐the‐art algorithms in qualitative and quantitative assessments. Ablation studies validate our approach's advantages, and efficiency comparisons demonstrate its computational efficiency. Therefore, our method makes the security systems in smart city with shorter delay and satisfies the real‐time requirement.

Publisher

Wiley

Reference55 articles.

1. End-to-End Object Detection with Transformers

2. An image is worth 16×16 words: Transformers for image recognition at scale;Dosovitskiy A.;arXiv,2020

3. PPT Fusion: Pyramid patch transformerfor a case study in image fusion;Fu Y.;ArXiv,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3