6. Matching with Multiple Controls to Estimate Treatment Effects in Observational Studies

Author:

Smith Herbert L.1

Affiliation:

1. University of Pennsylvania

Abstract

Matching to control for covariates in the estimation of treatment effects is not common in sociology, where multivariate data are most often analyzed using multiple regression and its generalizations. Matching can be a useful way to estimate these effects, especially when the treatment condition is comparatively rare in a population, and controls are numerous but mostly unlike the treatment cases. Matching on numerous covariates is abetted by the estimation of propensity scores, or functions of the probability that cases are treatments rather than controls. This procedure is illustrated in the estimation of the effects of an organizational innovation on Medicare mortality within hospitals; the data set is very large, but innovative hospitals few, and many of the remaining hospitals are quite unlike the hospitals constituting the treatment sub-sample. Results are based on a variance-components model that is extended to consider the effects of an additional covariate. They show effects of the organizational innovation comparable to those estimated via multiple regression models but with substantially reduced standard errors.

Publisher

SAGE Publications

Subject

Sociology and Political Science

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3