Beet mosaic virus expression of a betalain transcription factor allows visual virus tracking in Beta vulgaris

Author:

Rollwage Lukas1ORCID,Maiss Edgar2,Menzel Wulf3,Hossain Roxana1,Varrelmann Mark1

Affiliation:

1. Institute of Sugar Beet Research Göttingen Germany

2. Institute of Horticultural Production Systems Leibniz University Hannover Hannover Germany

3. Plant Virus Department Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures Braunschweig Germany

Abstract

AbstractIn the field of plant virology, the usage of reverse genetic systems has been reported for multiple purposes. One is understanding virus–host interaction by labelling viral cDNA clones with fluorescent protein genes to allow visual virus tracking throughout a plant, albeit this visualization depends on technical devices. Here we report the first construction of an infectious cDNA full‐length clone of beet mosaic virus (BtMV) that can be efficiently used for Agrobacterium‐mediated leaf inoculation with high infection rate in Beta vulgaris, being indistinguishable from the natural virus isolate regarding symptom development and vector transmission. Furthermore, the BtMV clone was tagged with the genes for the monomeric red fluorescent protein or the Beta vulgaris BvMYB1 transcription factor, which activates the betalain biosynthesis pathway. The heterologous expression of BvMYB1 results in activation of betalain biosynthesis genes in planta, allowing visualization of the systemic BtMV spread with the naked eye as red pigmentation emerging throughout beet leaves. In the case of BtMV, the BvMYB1 marker system is stable over multiple mechanical host passages, allows qualitative as well as quantitative virus detection and offers an excellent opportunity to label viruses in plants of the order Caryophyllales, allowing an in‐depth investigation of virus–host interactions on the whole plant level.

Publisher

Wiley

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3